Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Philipp Neuner ORCID = 0000-0002-9487-6622

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1287 KiB  
Article
Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates
by David Graf, Philipp Neuner and Reinhard Rauch
Fuels 2023, 4(2), 156-173; https://doi.org/10.3390/fuels4020010 - 12 Apr 2023
Viewed by 3142
Abstract
Methanol-to-gasoline (MTG) and dimethyl ether-to-gasoline (DTG) fuels are rich in heavy aromatics such as 1,2,4,5-tetramethylbenzene, resulting in low volatilities due to a lack of light ends, increased emission tendencies and drivability problems due to crystallization. Approaches addressing these issues mainly focus on single [...] Read more.
Methanol-to-gasoline (MTG) and dimethyl ether-to-gasoline (DTG) fuels are rich in heavy aromatics such as 1,2,4,5-tetramethylbenzene, resulting in low volatilities due to a lack of light ends, increased emission tendencies and drivability problems due to crystallization. Approaches addressing these issues mainly focus on single aspects or are optimized for petroleum-based feedstocks. This research article introduces an upgrading strategy for MTG and DTG fuels through hydroprocessing (HP) heavy-ends and applying a sophisticated blending concept. Different product qualities were prepared by HP heavy gasoline (HG) and Fischer-Tropsch wax using commercially available Pt/HZSM-5 and Pt/SAPO-11 catalysts in a fixed-bed reactor. The products were used for blending experiments, focusing on gasoline volatility characteristics. Accordingly, methanol, ethanol, methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) were evaluated in a second blending experiment. The results were finally considered for preparing blends meeting EN 228. HP of HG was found to improve the amount of light-ends and the vapor pressure of the DTG fuel with increasing reaction temperature without, however, satisfying EN 228. The front-end volatility was further improved by blending methanol due to the formation of near-azeotropic mixtures, while ethyl tert-butyl ether (ETBE) considerably supported the mid-range volatility. A final blend with an alcohol content of less than 3 vol.%, mostly meeting EN 228, could be provided, making it suitable even for older vehicles. Full article
(This article belongs to the Special Issue Advances in Synthetic Fuel)
Show Figures

Graphical abstract

22 pages, 4527 KiB  
Article
Chemical Conversion of Fischer–Tropsch Waxes and Plastic Waste Pyrolysis Condensate to Lubricating Oil and Potential Steam Cracker Feedstocks
by Philipp Neuner, David Graf, Niklas Netsch, Michael Zeller, Tom-Carlo Herrmann, Dieter Stapf and Reinhard Rauch
Reactions 2022, 3(3), 352-373; https://doi.org/10.3390/reactions3030026 - 6 Jul 2022
Cited by 7 | Viewed by 4405
Abstract
The global economy and its production chains must move away from petroleum-based products, to achieve this goal, alternative carbon feedstocks need to be established. One area of concern is sustainable production of synthetic lubricants. A lubricating oil can be described as a high [...] Read more.
The global economy and its production chains must move away from petroleum-based products, to achieve this goal, alternative carbon feedstocks need to be established. One area of concern is sustainable production of synthetic lubricants. A lubricating oil can be described as a high boiling point (>340 °C) liquid with solidification at least below room temperature. Historically, many lubricants have been produced from petroleum waxes via solvent or catalytic dewaxing. In this study, catalytic dewaxing was applied to potential climate neutral feedstocks. One lubricant was produced via Fischer–Tropsch (FT) synthesis and the other lubricant resulted from low temperature pyrolysis of agricultural waste plastics. The waxes were chosen because they each represented a sustainable alternative towards petroleum, i.e., FT waxes are contrivable from biomass and CO2 by means of gasification and Power-to-X technology. The pyrolysis of plastic is a promising process to complement existing recycling processes and to reduce environmental pollution. Changes in cloud point, viscosity, and yield were investigated. A bifunctional zeolite catalyst (SAPO-11) loaded with 0.3 wt% platinum was used. The plastic waste lubricants showed lower cloud points and increased temperature stability as compared with lubricants from FT waxes. There was a special focus on the composition of the naphtha, which accumulated during cracking. While the plastic waste produced higher amounts of naphtha, its composition was quite similar to those from FT waxes, with the notable exception of a higher naphthene content. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
Show Figures

Figure 1

14 pages, 2368 KiB  
Article
Catalytic Hydroisomerisation of Fischer–Tropsch Waxes to Lubricating Oil and Investigation of the Correlation between Its Physical Properties and the Chemical Composition of the Corresponding Fuel Fractions
by Philipp Neuner, David Graf, Heiko Mild and Reinhard Rauch
Energies 2021, 14(14), 4202; https://doi.org/10.3390/en14144202 - 12 Jul 2021
Cited by 10 | Viewed by 4221
Abstract
Due to environmental concerns, the role of renewable sources for petroleum-based products has become an invaluable research topic. One possibility of achieving this goal is the Fischer–Tropsch synthesis (FTS) based on sustainable raw materials. Those materials include, but are not limited to, synthesis [...] Read more.
Due to environmental concerns, the role of renewable sources for petroleum-based products has become an invaluable research topic. One possibility of achieving this goal is the Fischer–Tropsch synthesis (FTS) based on sustainable raw materials. Those materials include, but are not limited to, synthesis gas from biomass gasification or hydrogen through electrolysis powered by renewable electricity. In recent years, the utilisation of CO2 as carbon source for FTS was one main R&D topic. This is one of the reasons for its increase in value and the removal of its label as being just exhaust gas. With the heavy product fraction of FTS, referred to as Fischer–Tropsch waxes (FTW), being rather limited in their application, catalytic upgrading can help to increase the economic viability of such a process by converting the waxes to high value transportation fuels and lubricating oils. In this paper, the dewaxing of FTW via hydroisomerisation and hydrocracking was investigated. A three phase fixed bed reactor was used in combination with a zeolitic catalyst with an AEL (SAPO-11) structure and 0.3 wt% platinum (Pt). The desired products were high quality white oils with low cloud points. These products were successfully produced in a one-step catalytic dewaxing process. Within this work, a direct correlation between the physical properties of the white oils and the chemical composition of the simultaneously produced fuel fractions could be established. Full article
(This article belongs to the Special Issue Catalytic Processes for CO2 Utilization)
Show Figures

Figure 1

Back to TopTop