Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Olga Dornyak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1078 KiB  
Article
Immersion Freezing of a Scots Pine Single Seed in a Water-Saturated Dispersion Medium: Mathematical Modelling
by Olga Dornyak and Arthur Novikov
Inventions 2020, 5(4), 51; https://doi.org/10.3390/inventions5040051 - 25 Sep 2020
Cited by 4 | Viewed by 2601
Abstract
Forest owners will be able to solve the problem of protecting small forest seeds from mechanical and atmospheric influences during aerial sowing, as well as the problem of manufacturing capsules in the field, saving financial, time and material resources. The process of creating [...] Read more.
Forest owners will be able to solve the problem of protecting small forest seeds from mechanical and atmospheric influences during aerial sowing, as well as the problem of manufacturing capsules in the field, saving financial, time and material resources. The process of creating a capsule by freezing the seed in a water-saturated dispersed system—immersion freezing—allows you to organize the technological properties of forest seeds depending on the initial requirements. In most cases, the quality of the seed capsule is determined by the thermophysical and mechanical properties of the components. The technological process of obtaining seed capsules for aerial seeding and the choice of freezing modes is based on a priori mathematical modeling of heat-and-mass transfer processes. The main purpose of the study is to predict the duration of the seed freezing process in a capsule with a water-saturated dispersed medium, depending on the external temperature conditions, the geometric parameters of the capsule and the seed. The cooling agent is carbon dioxide. The research is based on the use of numerical modeling methods on the platform COMSOL Multiphysics. A mathematical model is proposed that allows us to obtain the dynamics of the distribution of temperature and moisture content fields in the dispersed system and seed depending on a complex of geometric and thermophysical factors. The time of immersion freezing of the capsule with the common pine seed for the conditions considered should be in the range of 150 to 250 s. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Graphical abstract

11 pages, 3259 KiB  
Article
The Effect of Motion Time of a Scots Pine Single Seed on Mobile Optoelectronic Grader Efficiency: A Mathematical Patterning
by Arthur Novikov, Michael Drapalyuk, Olga Dornyak, Vladimir Zelikov and Vladan Ivetić
Inventions 2019, 4(4), 55; https://doi.org/10.3390/inventions4040055 - 25 Sep 2019
Cited by 13 | Viewed by 4589
Abstract
Research Highlights: Forest owners will be able to solve the problem of testing and selection of viable forest seeds on location and save financial, time, and material resources. The possibility of integrating non-destructive quality control and separation functions in a single portable apparatus [...] Read more.
Research Highlights: Forest owners will be able to solve the problem of testing and selection of viable forest seeds on location and save financial, time, and material resources. The possibility of integrating non-destructive quality control and separation functions in a single portable apparatus is extremely promising. The speed of the contemporary optoelectronic grader is limited by the speed of the slowest component—the mechanical system. Background and Objectives: The technological process of forest seed establishment and design of optoelectronic graders is based on a priori mathematical modeling of structural characteristics, taking into account these criteria. Known models of industrial photoseparators are expensive and have a high energy and material consumption not applicable in the field. Laboratory seed analyzers are characterized by a long time exposure, and the overall size and level of climatic performance do not allow them to be used in the field. Consequently, for small amounts of seed treatment, it is necessary to orient the seeds one by one and ensure clear and rapid coordinated actions of optoelectronic and mechanical systems. The main goal of this research is to increase the efficiency of grading forest seeds by patterning the speed of the mobile device. We will answer the following questions. What are effective geometric parameters for the seed pipe? What factors affect the speed of a single seed’s movement? Materials and Methods: This study is based on mathematical modeling, taking into account the basic principles of mechanics, using MatLab software. Results: A mechanical model of a single Scots pine seed’s motion in different zones of the seed pipe is designed, taking into account air resistance. The effective height of the seed pipe, taking into account the response time of optoelectronic grader systems, is determined. Conclusions: The time and speed of single seed movement through grader systems depends on the seed pipe’s height and radius of curvature. Other things being equal, through the use of the same optical scheme with a microprocessor to solve various problems, the compactness of the photodetector scheme allows, if necessary, to upgrade the grader to solve research problems and for use in forestry. Full article
(This article belongs to the Special Issue Automatic Control and System Theory)
Show Figures

Figure 1

Back to TopTop