Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Nimra Manzoor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7218 KiB  
Article
Simulation and Analysis of Anodized Aluminum Oxide Membrane Degradation
by Saher Manzoor, Faheem Qasim, Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nimra Tariq, Agustín L. Herrera-May and Enrique Delgado-Alvarado
Sensors 2023, 23(24), 9792; https://doi.org/10.3390/s23249792 - 13 Dec 2023
Cited by 1 | Viewed by 2176
Abstract
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization [...] Read more.
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup. Full article
Show Figures

Figure 1

10 pages, 3857 KiB  
Article
Antibacterial Applications of Low-Pressure Plasma on Degradation of Multidrug Resistant V. cholera
by Nimra Manzoor, Irfan Qasim, Muhammad Ijaz Khan, Muhammad Waqar Ahmed, Kamel Guedri, Omar T. Bafakeeh, El Sayed Mohamed Tag-Eldin and Ahmed M. Galal
Appl. Sci. 2022, 12(19), 9737; https://doi.org/10.3390/app12199737 - 27 Sep 2022
Cited by 52 | Viewed by 3499
Abstract
The existence of Vibrio cholera (V. cholera) is a major health problem in many parts of the world; therefore, the treatments of V. cholera have always remained necessary for public safety, health, and environmental protection. In the last few decades, plasma discharges [...] Read more.
The existence of Vibrio cholera (V. cholera) is a major health problem in many parts of the world; therefore, the treatments of V. cholera have always remained necessary for public safety, health, and environmental protection. In the last few decades, plasma discharges have proven to be a novel technique of sterilization against infectious bacteria such as V. cholera. In this research, a low-pressure plasma (LPP) technique has been introduced for the degradation of multidrug resistant V. cholera. The V. cholera strains with 107 CFUs (colony-forming units) were treated by low-pressure plasma, with and without H2O2 injection into the sterilization chamber, to investigate and report the adverse effects of plasma on V. cholera. The results demonstrated that plasma treatment has significant effects on the degradation of V. cholera in the presence of H2O2 vapors inside the plasma sterilization chamber. The time-course study of the bactericidal effects revealed that there is no regeneration or increase in the number of V. cholera colonies after plasma treatment. Full article
(This article belongs to the Special Issue Biomedical Applications of Pulsed Power and Plasmas)
Show Figures

Figure 1

Back to TopTop