Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Nicolai Vitt Meyling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3372 KiB  
Article
Root-Associated Entomopathogenic Fungi Modulate Their Host Plant’s Photosystem II Photochemistry and Response to Herbivorous Insects
by Julietta Moustaka, Nicolai Vitt Meyling and Thure Pavlo Hauser
Molecules 2022, 27(1), 207; https://doi.org/10.3390/molecules27010207 - 29 Dec 2021
Cited by 14 | Viewed by 2745
Abstract
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets’ reaction to herbivory [...] Read more.
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets’ reaction to herbivory by Spodoptera exigua (beet armyworm) larvae using chlorophyll fluorescence imaging. Plants were inoculated with Metarhizium brunneum or Beauveria bassiana, and photosystem II reactions were evaluated before and after larval feeding. Before herbivory, the fraction of absorbed light energy used for photochemistry (ΦPSII) was lower in M. brunneum-inoculated than in control plants, but not in B. bassiana-inoculated plants. After herbivory, however, ΦPSII increased in the fungal-inoculated plants compared with that before herbivory, similar to the reaction of control plants. At the same time, the fraction of energy dissipated as heat (ΦNPQ) decreased in the inoculated plants, resulting in an increased fraction of nonregulated energy loss (ΦNO) in M. brunneum. This indicates an increased singlet oxygen (1O2) formation not detected in B. bassiana-inoculated plants, showing that the two entomopathogenic fungi differentially modulate the leaflets’ response to herbivory. Overall, our results show that M. brunneum inoculation had a negative effect on the photosynthetic efficiency before herbivory, while B. bassiana inoculation had no significant effect. However, S. exigua leaf biting activated the same compensatory PSII response mechanism in tomato plants of both fungal-inoculated treatments as in control plants. Full article
(This article belongs to the Special Issue Photosystem II Photochemistry in Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 4743 KiB  
Article
Induction of a Compensatory Photosynthetic Response Mechanism in Tomato Leaves upon Short Time Feeding by the Chewing Insect Spodoptera exigua
by Julietta Moustaka, Nicolai Vitt Meyling and Thure Pavlo Hauser
Insects 2021, 12(6), 562; https://doi.org/10.3390/insects12060562 - 18 Jun 2021
Cited by 41 | Viewed by 4019
Abstract
In addition to direct tissue consumption, herbivory may affect other important plant processes. Here, we evaluated the effects of short-time leaf feeding by Spodoptera exigua larvae on the photosynthetic efficiency of tomato plants, using chlorophyll a fluorescence imaging analysis. After 15 min of [...] Read more.
In addition to direct tissue consumption, herbivory may affect other important plant processes. Here, we evaluated the effects of short-time leaf feeding by Spodoptera exigua larvae on the photosynthetic efficiency of tomato plants, using chlorophyll a fluorescence imaging analysis. After 15 min of feeding, the light used for photochemistry at photosystem II (PSII) (ΦPSII), and the regulated heat loss at PSII (ΦNPQ) decreased locally at the feeding zones, accompanied by increased non-regulated energy losses (ΦNO) that indicated increased singlet oxygen (1O2) formation. In contrast, in zones neighboring the feeding zones and in the rest of the leaf, ΦPSII increased due to a decreased ΦNPQ. This suggests that leaf areas not directly affected by herbivory compensate for the photosynthetic losses by increasing the fraction of open PSII reaction centers (qp) and the efficiency of these centers (Fv’/Fm’), because of decreased non-photochemical quenching (NPQ). This compensatory reaction mechanism may be signaled by singlet oxygen formed at the feeding zone. PSII functionality at the feeding zones began to balance with the rest of the leaf 3 h after feeding, in parallel with decreased compensatory responses. Thus, 3 h after feeding, PSII efficiency at the whole-leaf level was the same as before feeding, indicating that the plant managed to overcome the feeding effects with no or minor photosynthetic costs. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

11 pages, 1932 KiB  
Article
Establishment Success of the Beetle Tapeworm Hymenolepis diminuta Depends on Dose and Host Body Condition
by Suraj Dhakal, Sebastian Micki Buss, Elizabeth Jane Cassidy, Nicolai Vitt Meyling and Brian Lund Fredensborg
Insects 2018, 9(1), 14; https://doi.org/10.3390/insects9010014 - 3 Feb 2018
Cited by 4 | Viewed by 6261
Abstract
Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour [...] Read more.
Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour beetle Tenebrio molitor model—has been used extensively for ecological and evolutionary host–parasite studies. Successful establishment of H. diminuta cysticercoids in T. molitor relies on ingestion of viable eggs and penetration of the gut wall by the onchosphere. Like in other insect models, there is a lack of standardization of the infection load of cysticercoids in beetles. The aims of this study were to: (1) quantify the relationship between exposure dose and establishment success across several H. diminuta egg concentrations; and (2) test parasite establishment in beetles while experimentally manipulating host body condition and potential immune response to infection. Different egg concentrations of H. diminuta isolated from infected rat feces were fed to individual beetles 7–10 days after eclosion and beetles were exposed to starvation, wounding, or insertion of a nylon filament one hour prior to infection. We found that the establishment of cysticercoids in relation to exposure dose could be accurately predicted using a power function where establishment success was low at three lowest doses and higher at the two highest doses tested. Long-term starvation had a negative effect on cysticercoid establishment success, while insertion of a nylon filament and wounding the beetles did not have any effect compared to control treatment. Thus, our results show that parasite load may be predicted from the exposure dose within the observed range, and that the relationship between dose and parasite establishment success is able to withstand some changes in host body condition. Full article
(This article belongs to the Special Issue Parasite-Insect Interactions)
Show Figures

Graphical abstract

Back to TopTop