Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Nadia El Felss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1902 KiB  
Article
Functionalization of Hydroxyapatite Ceramics: Raman Mapping Investigation of Silanization
by David Siniscalco, Maggy Dutreilh-Colas, Zahi Hjezi, Julie Cornette, Nadia El Felss, Eric Champion and Chantal Damia
Ceramics 2019, 2(2), 372-384; https://doi.org/10.3390/ceramics2020029 - 22 May 2019
Cited by 26 | Viewed by 5469
Abstract
Surface modification of bioceramic materials by covalent immobilization of biomolecules is a promising way to improve their bioactivity. This approach implies the use of organic anchors to introduce functional groups on the inorganic surface on which the biomolecules will be immobilized. In this [...] Read more.
Surface modification of bioceramic materials by covalent immobilization of biomolecules is a promising way to improve their bioactivity. This approach implies the use of organic anchors to introduce functional groups on the inorganic surface on which the biomolecules will be immobilized. In this process, the density and surface distribution of biomolecules, and in turn the final biological properties, are strongly influenced by those of the anchors. We propose a new approach based on Raman 2D mapping to evidence the surface distribution of organosilanes, frequently used as anchors on biomaterial surfaces on hydroxyapatite and silicated hydroxyapatite ceramics. Unmodified and silanized ceramic surfaces were characterized by means of contact angle measurements, atomic force microscopy (AFM) and Raman mapping. Contact angle measurements and AFM topographies confirmed the surface modification. Raman mapping highlighted the influence of both the ceramic’s composition and silane functionality (i.e., the number of hydrolysable groups) on the silane surface distribution. The presence of hillocks was shown, evidencing a polymerization and/or an aggregation of the molecules whatever the silane and the substrates were. The substitution of phosphate groups by silicate groups affects the covering, and the spots are more intense on SiHA than on HA. Full article
(This article belongs to the Special Issue Ceramics for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop