Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = N.R. Patel ORCID = 0000-0003-2543-8677

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7008 KiB  
Article
Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers
by Bikash Ranjan Parida, Arvind Chandra Pandey and N.R. Patel
Climate 2020, 8(8), 92; https://doi.org/10.3390/cli8080092 - 9 Aug 2020
Cited by 79 | Viewed by 11568
Abstract
It is imperative to know the spatial distribution of vegetation trends in India and its responses to both climatic and non-climatic drivers because many ecoregions are vulnerable to global climate change. Here we employed the NDVI3g satellite data over the span of 35 [...] Read more.
It is imperative to know the spatial distribution of vegetation trends in India and its responses to both climatic and non-climatic drivers because many ecoregions are vulnerable to global climate change. Here we employed the NDVI3g satellite data over the span of 35 years (1981/82–2015) to estimate vegetation trends and corresponding climatic variables trends (i.e., precipitation, temperature, solar radiation and soil moisture) by using the Mann–Kendall test (τ) and the Theil–Sen median trend. Analysis was performed separately for the two focal periods—(i) the earlier period (1981/82–2000) and (ii) later period (2000–2015)—because many ecoregions experienced more warming after 2000 than the 1980s and 1990s. Our results revealed that a prominent large-scale greening trend (47% of area) of vegetation continued from the earlier period to the later period (80% of area) across the northwestern Plain and Central India. Despite climatologically drier regions, the stronger greening trend was also evident over croplands which was attributed to moisture-induced greening combined with cooling trends of temperature. However, greening trends of vegetation and croplands diminished (i.e., from 84% to 40% of area in kharif season), especially over the southern peninsula, including the west-central area. Such changes were mostly attributed to warming trends and declined soil moisture trends, a phenomenon known as temperature-induced moisture stress. This effect has an adverse impact on vegetation growth in the Himalayas, Northeast India, the Western Ghats and the southern peninsula, which was further exaggerated by human-induced land-use change. Therefore, it can be concluded that vegetation trend analysis from NDVI3g data provides vital information on two mechanisms (i.e., temperature-induced moisture stress and moisture-induced greening) operating in India. In particular, the temperature-induced moisture stress is alarming, and may be exacerbated in the future under accelerated warming as it may have potential implications on forest and agriculture ecosystems, including societal impacts (e.g., food security, employment, wealth). These findings are very valuable to policymakers and climate change awareness-raising campaigns at the national level. Full article
Show Figures

Figure 1

20 pages, 1552 KiB  
Article
Net Ecosystem Exchange of CO2 in Deciduous Pine Forest of Lower Western Himalaya, India
by Nilendu Singh, Bikash Ranjan Parida, Joyeeta Singh Charakborty and N.R. Patel
Resources 2019, 8(2), 98; https://doi.org/10.3390/resources8020098 - 20 May 2019
Cited by 20 | Viewed by 6198
Abstract
Carbon cycle studies over the climate-sensitive Himalayan regions are relatively understudied and to address this gap, systematic measurements on carbon balance components were performed over a deciduous pine forest with an understory layer. We determined annual net carbon balance, seasonality in components of [...] Read more.
Carbon cycle studies over the climate-sensitive Himalayan regions are relatively understudied and to address this gap, systematic measurements on carbon balance components were performed over a deciduous pine forest with an understory layer. We determined annual net carbon balance, seasonality in components of carbon balance, and their environmental controls. Results indicated a strong seasonality in the behavior of carbon exchange components. Net primary productivity (NPP) of pine forest exceeded soil respiration during the growing phase. Consequently, net ecosystem exchange exhibited a net carbon uptake. In the initial phase of the growing season, daily mean uptake was −3.93 (±0.50) g C m−2 day−1, which maximizes (−8.47 ± 2.3) later during post-monsoon. However, a brief phase of carbon release was observed during peak monsoon (August) owing to an overcast condition. Nevertheless, annually the forest remained as a carbon sink. The understory is extensively distributed and it turned out to be a key component of carbon balance because of sustained NPP during the pine leafless period. Temperature and evaporative fraction exhibited a prime control over the seasonal carbon dynamics. Our observations could lend certain useful insights into the application of coupled climate-carbon cycle models for the Himalaya and ecological functions in the region. Full article
Show Figures

Figure 1

Back to TopTop