Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Mostafa Rahimi Azghadi ORCID = 0000-0001-7975-3985

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 48712 KiB  
Article
Robotic Spot Spraying of Harrisia Cactus (Harrisia martinii) in Grazing Pastures of the Australian Rangelands
by Brendan Calvert, Alex Olsen, James Whinney and Mostafa Rahimi Azghadi
Plants 2021, 10(10), 2054; https://doi.org/10.3390/plants10102054 - 29 Sep 2021
Cited by 12 | Viewed by 3616
Abstract
Harrisia cactus, Harrisia martinii, is a serious weed affecting hundreds of thousands of hectares of native pasture in the Australian rangelands. Despite the landmark success of past biological control agents for the invasive weed and significant investment in its eradication by the [...] Read more.
Harrisia cactus, Harrisia martinii, is a serious weed affecting hundreds of thousands of hectares of native pasture in the Australian rangelands. Despite the landmark success of past biological control agents for the invasive weed and significant investment in its eradication by the Queensland Government (roughly $156M since 1960), it still takes hold in the cooler rangeland environments of northern New South Wales and southern Queensland. In the past decade, landholders with large infestations in these locations have spent approximately $20,000 to $30,000 per annum on herbicide control measures to reduce the impact of the weed on their grazing operations. Current chemical control requires manual hand spot spraying with high quantities of herbicide for foliar application. These methods are labour intensive and costly, and in some cases inhibit landholders from performing control at all. Robotic spot spraying offers a potential solution to these issues, but existing solutions are not suitable for the rangeland environment. This work presents the methods and results of an in situ field trial of a novel robotic spot spraying solution, AutoWeed, for treating harrisia cactus that (1) more than halves the operation time, (2) can reduce herbicide usage by up to 54% and (3) can reduce the cost of herbicide by up to $18.15 per ha compared to the existing hand spraying approach. The AutoWeed spot spraying system used the MobileNetV2 deep learning architecture to perform real time spot spraying of harrisia cactus with 97.2% average recall accuracy and weed knockdown efficacy of up to 96%. Experimental trials showed that the AutoWeed spot sprayer achieved the same level of knockdown of harrisia cactus as traditional hand spraying in low, medium and high density infestations. This work represents a significant step forward for spot spraying of weeds in the Australian rangelands that will reduce labour and herbicide costs for landholders as the technology sees more uptake in the future. Full article
(This article belongs to the Special Issue Weed Management in Rangeland Environments)
Show Figures

Graphical abstract

31 pages, 580 KiB  
Review
Automated Machine Learning for Healthcare and Clinical Notes Analysis
by Akram Mustafa and Mostafa Rahimi Azghadi
Computers 2021, 10(2), 24; https://doi.org/10.3390/computers10020024 - 22 Feb 2021
Cited by 91 | Viewed by 17950
Abstract
Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML [...] Read more.
Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML is to provide seamless integration of ML in various industries, which will facilitate better outcomes in everyday tasks. In healthcare, AutoML has been already applied to easier settings with structured data such as tabular lab data. However, there is still a need for applying AutoML for interpreting medical text, which is being generated at a tremendous rate. For this to happen, a promising method is AutoML for clinical notes analysis, which is an unexplored research area representing a gap in ML research. The main objective of this paper is to fill this gap and provide a comprehensive survey and analytical study towards AutoML for clinical notes. To that end, we first introduce the AutoML technology and review its various tools and techniques. We then survey the literature of AutoML in the healthcare industry and discuss the developments specific to clinical settings, as well as those using general AutoML tools for healthcare applications. With this background, we then discuss challenges of working with clinical notes and highlight the benefits of developing AutoML for medical notes processing. Next, we survey relevant ML research for clinical notes and analyze the literature and the field of AutoML in the healthcare industry. Furthermore, we propose future research directions and shed light on the challenges and opportunities this emerging field holds. With this, we aim to assist the community with the implementation of an AutoML platform for medical notes, which if realized can revolutionize patient outcomes. Full article
(This article belongs to the Special Issue Artificial Intelligence for Health)
Show Figures

Figure 1

Back to TopTop