Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Mark K. J. Ooi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3237 KiB  
Article
Metabolic Niches and Plasticity of Sand-Dune Plant Communities Along a Trans-European Gradient
by Matthew P. Davey, Rachel M. George, Mark K. J. Ooi, Mike M. Burrell and Robert P. Freckleton
Metabolites 2025, 15(4), 217; https://doi.org/10.3390/metabo15040217 - 24 Mar 2025
Cited by 1 | Viewed by 546
Abstract
Background: One of the greatest challenges to biologists is to understand the adaptive mechanisms of how plants will respond to climate at all levels from individual physiology to whole populations. For example, variation (plasticity) in the composition and concentration of metabolites will determine [...] Read more.
Background: One of the greatest challenges to biologists is to understand the adaptive mechanisms of how plants will respond to climate at all levels from individual physiology to whole populations. For example, variation (plasticity) in the composition and concentration of metabolites will determine productivity, reproduction, and ultimately survival and distribution of plants, especially those subjected to rapid climate change. Objectives: Our aim was to study how interspecific and intraspecific metabolic variation in plant species within a single community can be elucidated. Methods: We used a metabolomics approach to study metabolic acclimation (by measuring the metabolome between plants under “common garden” controlled environment conditions) and metabolic plasticity (using field based reciprocal transplant studies) in a set of Atlantic sand dune annual communities along a latitudinal gradient from Portugal to England. Results: In the common garden study, metabolically phenotyping (using a fingerprinting direct injection mass spectrometry approach) five species of annual plants showed that species living together in a community have distinct metabolic phenotypes (high inter-specific metabolic variation). There was low intra-specific metabolic variation between populations growing under standard environmental conditions. The metabolic variation in one species Veronica arvensis was measured in the reciprocal transplant study. Metabolic phenotypes obtained from all samples were similar across all sites regardless of where the plants originated from. Conclusions: This implies that the metabolome is highly plastic and the measurable metabolome in this study was influenced more by local environmental factors than inherent genetic factors. This work highlights that species are fulfilling different niches within this community. Furthermore, the measurable metabolome was highly plastic to environmental variation. Full article
Show Figures

Figure 1

18 pages, 2328 KiB  
Concept Paper
What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?
by Rachael H. Nolan, David M. J. S. Bowman, Hamish Clarke, Katharine Haynes, Mark K. J. Ooi, Owen F. Price, Grant J. Williamson, Joshua Whittaker, Michael Bedward, Matthias M. Boer, Vanessa I. Cavanagh, Luke Collins, Rebecca K. Gibson, Anne Griebel, Meaghan E. Jenkins, David A. Keith, Allen P. Mcilwee, Trent D. Penman, Stephanie A. Samson, Mark G. Tozer and Ross A. Bradstockadd Show full author list remove Hide full author list
Fire 2021, 4(4), 97; https://doi.org/10.3390/fire4040097 - 17 Dec 2021
Cited by 76 | Viewed by 24530
Abstract
The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the [...] Read more.
The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the range of causes, impacts and responses. We find that the extensive area burnt was due to extreme climatic circumstances. However, antecedent hazard reduction burns (prescribed burns with the aim of reducing fuel loads) were effective in reducing fire severity and house loss, but their effectiveness declined under extreme weather conditions. Impacts were disproportionately borne by socially disadvantaged regional communities. Urban populations were also impacted through prolonged smoke exposure. The fires produced large carbon emissions, burnt fire-sensitive ecosystems and exposed large areas to the risk of biodiversity decline by being too frequently burnt in the future. We argue that the rate of change in fire risk delivered by climate change is outstripping the capacity of our ecological and social systems to adapt. A multi-lateral approach is required to mitigate future fire risk, with an emphasis on reducing the vulnerability of people through a reinvigoration of community-level capacity for targeted actions to complement mainstream fire management capacity. Full article
Show Figures

Figure 1

11 pages, 2243 KiB  
Article
Fire-Related Cues Significantly Promote Seed Germination of Some Salt-Tolerant Species from Non-Fire-Prone Saline-Alkaline Grasslands in Northeast China
by Shaoyang Li, Hongyuan Ma and Mark K. J. Ooi
Plants 2021, 10(12), 2675; https://doi.org/10.3390/plants10122675 - 6 Dec 2021
Cited by 7 | Viewed by 3772
Abstract
Seed germination in response to fire-related cues has been widely studied in species from fire-prone ecosystems. However, the germination characteristics of species from non-fire-prone ecosystems, such as the saline-alkaline grassland, where fire occasionally occurs accidentally or is used as a management tool, have [...] Read more.
Seed germination in response to fire-related cues has been widely studied in species from fire-prone ecosystems. However, the germination characteristics of species from non-fire-prone ecosystems, such as the saline-alkaline grassland, where fire occasionally occurs accidentally or is used as a management tool, have been less studied. Here, we investigate the effects of different types of fire cues (i.e., heat and smoke water) and their combined effect on the seed germination of 12 species from the saline-alkaline grassland. The results demonstrated that heat shock significantly increased the germination percentage of Suaeda glauca and Kochia scoparia var. sieversiana seeds. Smoke water significantly increased the germination percentage of Setaria viridis and K. scoparia seeds. However, compared with single fire cue treatments, the combined treatment neither promoted nor inhibited seed germination significantly in most species. These results suggest that fire cues can be used as germination enhancement tools for vegetation restoration and biodiversity protection of the saline-alkaline grassland. Full article
(This article belongs to the Collection New Trends in Plant Science in China)
Show Figures

Figure 1

Back to TopTop