Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Mark Cartolano

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7524 KiB  
Article
Improving the Actuation Speed and Multi-Cyclic Actuation Characteristics of Silicone/Ethanol Soft Actuators
by Boxi Xia, Aslan Miriyev, Cesar Trujillo, Neil Chen, Mark Cartolano, Shivaniprashant Vartak and Hod Lipson
Actuators 2020, 9(3), 62; https://doi.org/10.3390/act9030062 - 28 Jul 2020
Cited by 24 | Viewed by 7029
Abstract
The actuation of silicone/ethanol soft composite material-actuators is based on the phase change of ethanol upon heating, followed by the expansion of the whole composite, exhibiting high actuation stress and strain. However, the low thermal conductivity of silicone rubber hinders uniform heating throughout [...] Read more.
The actuation of silicone/ethanol soft composite material-actuators is based on the phase change of ethanol upon heating, followed by the expansion of the whole composite, exhibiting high actuation stress and strain. However, the low thermal conductivity of silicone rubber hinders uniform heating throughout the material, creating overheated damaged areas in the silicone matrix and accelerating ethanol evaporation. This limits the actuation speed and the total number of operation cycles of these thermally-driven soft actuators. In this paper, we showed that adding 8 wt.% of diamond nanoparticle-based thermally conductive filler increases the thermal conductivity (from 0.190 W/mK to 0.212 W/mK), actuation speed and amount of operation cycles of silicone/ethanol actuators, while not affecting the mechanical properties. We performed multi-cyclic actuation tests and showed that the faster and longer operation of 8 wt.% filler material-actuators allows collecting enough reliable data for computational methods to model further actuation behavior. We successfully implemented a long short-term memory (LSTM) neural network model to predict the actuation force exerted in a uniform multi-cyclic actuation experiment. This work paves the way for a broader implementation of soft thermally-driven actuators in various robotic applications. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the SCIE Coverage)
Show Figures

Graphical abstract

28 pages, 11227 KiB  
Article
Conductive Fabric Heaters for Heat-Activated Soft Actuators
by Mark Cartolano, Boxi Xia, Aslan Miriyev and Hod Lipson
Actuators 2019, 8(1), 9; https://doi.org/10.3390/act8010009 - 21 Jan 2019
Cited by 34 | Viewed by 15401
Abstract
We examine electrically conductive fabrics as conductive heaters for heat-activated soft actuators. We have explored various fabric designs optimized for material properties, heat distribution and actuation/de-actuation characteristics of the soft actuators. We implemented this approach in the silicone/ethanol composite actuators, in which ethanol [...] Read more.
We examine electrically conductive fabrics as conductive heaters for heat-activated soft actuators. We have explored various fabric designs optimized for material properties, heat distribution and actuation/de-actuation characteristics of the soft actuators. We implemented this approach in the silicone/ethanol composite actuators, in which ethanol undergoes a thermally-induced phase change, leading to high actuation stress and strain. Various types of conductive fabrics were tested, and we developed a stretchable kirigami-based fabric design. We demonstrate a fabric heater that is capable of cyclic heating of the actuator to the required 80 °C. The fabric with the special kirigami design can withstand temperatures of up to 195 °C, can consume up to 30 W of power, and allows the actuator to reach >30% linear strain. This technology may be used in various systems involving thermally-induced actuation. Full article
(This article belongs to the Special Issue New Materials and Designs for Soft Actuators)
Show Figures

Figure 1

Back to TopTop