Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Laurel George

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4865 KiB  
Article
Encapsulated Rose Bengal Enhances the Photodynamic Treatment of Triple-Negative Breast Cancer Cells
by Mir Muhammad Nasir Uddin, Alina Bekmukhametova, Anu Antony, Shital K. Barman, Jessica Houang, Ming J. Wu, James M. Hook, Laurel George, Richard Wuhrer, Damia Mawad, Daniel Ta, Herleen Ruprai and Antonio Lauto
Molecules 2024, 29(2), 546; https://doi.org/10.3390/molecules29020546 - 22 Jan 2024
Cited by 6 | Viewed by 3601
Abstract
Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic [...] Read more.
Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues. Full article
Show Figures

Figure 1

19 pages, 3755 KiB  
Article
Photodynamic Treatment of Human Breast and Prostate Cancer Cells Using Rose Bengal-Encapsulated Nanoparticles
by Mir Muhammad Nasir Uddin, Alina Bekmukhametova, Anu Antony, Shital K. Barman, Jessica Houang, Ming J. Wu, James Hook, Laurel George, Richard Wuhrer, Damia Mawad, Daniel Ta and Antonio Lauto
Molecules 2023, 28(19), 6901; https://doi.org/10.3390/molecules28196901 - 1 Oct 2023
Cited by 4 | Viewed by 3317
Abstract
Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in [...] Read more.
Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily internalized by cells and, in combination with a green laser (λ = 532 nm) killed 94–98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 μg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry 2.0)
Show Figures

Graphical abstract

18 pages, 4489 KiB  
Article
Thermal and Pyrolysis Kinetics Analysis of Glass Wool and XPS Insulation Materials Used in High-Rise Buildings
by Md Delwar Hossain, Md Kamrul Hassan, Swapan Saha, Anthony Chun Yin Yuen, Cheng Wang, Laurel George and Richard Wuhrer
Fire 2023, 6(6), 231; https://doi.org/10.3390/fire6060231 - 8 Jun 2023
Cited by 11 | Viewed by 3575
Abstract
This study investigates the kinetics data of glass wool (GW) and extruded polystyrene (XPS) insulation materials used in cladding systems using a systematic framework. The determination of appropriate kinetic properties, such as pre-exponential factors, activation energy and reaction orders, is crucial for accurately [...] Read more.
This study investigates the kinetics data of glass wool (GW) and extruded polystyrene (XPS) insulation materials used in cladding systems using a systematic framework. The determination of appropriate kinetic properties, such as pre-exponential factors, activation energy and reaction orders, is crucial for accurately modelling the full-scale fire performance of insulation materials. The primary objective of this research is to extract thermal and kinetics data of XPS and GW insulation materials employed in high-rise buildings. To obtain these properties, thermogravimetric analysis (TGA) is conducted at four different heating rates: 5, 10, 15 and 20 K/min. The TGA results serve as the basis for determining the kinetic properties using a combination of model-free and model-based methods. The outcomes of this study are expected to be highly beneficial in defining the pyrolysis reaction steps and extracting kinetics data for fire modelling of such insulation materials. This information will enhance the understanding of the fire behaviour and performance of these materials during fire incidents, aiding in developing more accurate fire models and improving fire safety strategies for cladding systems in high-rise buildings. Full article
Show Figures

Figure 1

12 pages, 3022 KiB  
Article
Fertilizer Nitrogen Application for Short-Day Onion Production: From Field to Table
by Andre Luiz Biscaia Ribeiro da Silva, Camila Rodrigues, Laurel Dunn, George Cavender and Timothy Coolong
Horticulturae 2022, 8(9), 847; https://doi.org/10.3390/horticulturae8090847 - 15 Sep 2022
Cited by 6 | Viewed by 3160
Abstract
Long growing seasons, relatively shallow root system, coarse textured soils, and variability of the subtropical environmental conditions of the southeastern U.S. create challenges for nitrogen (N) fertilizer management of short-day onions. The objectives of this study were: (i) to evaluate the impact of [...] Read more.
Long growing seasons, relatively shallow root system, coarse textured soils, and variability of the subtropical environmental conditions of the southeastern U.S. create challenges for nitrogen (N) fertilizer management of short-day onions. The objectives of this study were: (i) to evaluate the impact of fertilizer N rates on the yield and bulb quality of three short-day onion cultivars grown under the subtropical conditions of the southeastern U.S., and (ii) to assess the impact of fertilizer N rate for short-day onions on consumers’ preference. Field experiments were conducted in 2019 and 2020 at the Vidalia Onion and Vegetable Research Center at the University of Georgia located in Lyons, GA, in which a two factorial experimental design of five fertilizer N rates (84, 101, 117, 134, and 151 kg of N ha−1) and three short-day onion cultivars (Sweet Agent, Vidora, and Quick Start) was evaluated in a randomized complete block design. During both growing seasons, rainfall events directly impacted soil mineral N content. While soil mineral N availability increased with fertilizer N application, there was no significant difference among fertilizer N rate treatments due to rainfall distribution in both years studied, except at bulb initiation when the application of 117 kg of N ha−1 sustained soil mineral N availability that maximized with the application of 128 kg of N ha−1. Onion total yield averaged 37,365 kg ha−1 in 2019 and 34,699 kg ha−1 in 2020. In general, colossal, jumbo, and medium-sized onions represented 7%, 76%, and 17% of total yield, respectively. Jumbo-sized onions are of most interest to growers due to their high value, and the yield of jumbo-sized onions was maximized with 158 kg of N ha−1 in 2019 and with 138 kg of N ha−1 in 2020. Bulb bacterial rots were not impacted by fertilizer N rate treatments. Contrarily, bulb gallic acid (GAE) linearly increased and pyruvic acid quadratically increased with the application of fertilizer N rate. Ultimately, a taste panel indicated that sensory characteristics were also not affected by different rates. Overall, a fertilizer N rate application of 117 to 134 kg of N ha−1 could sustain soil mineral N availability without impacting yield; however, an investigation on the timing of application should be conducted to determine a fertilizer N strategy that will promote optimum yield, bulb quality, flavor, and consumer acceptability. Full article
Show Figures

Figure 1

Back to TopTop