Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Laura Forero-Junco

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1677 KiB  
Article
Bacteriophages Roam the Wheat Phyllosphere
by Laura Milena Forero-Junco, Katrine Wacenius Skov Alanin, Amaru Miranda Djurhuus, Witold Kot, Alex Gobbi and Lars Hestbjerg Hansen
Viruses 2022, 14(2), 244; https://doi.org/10.3390/v14020244 - 26 Jan 2022
Cited by 18 | Viewed by 5836
Abstract
The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried [...] Read more.
The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now. In this study, we extracted, sequenced, and characterized the dsDNA and ssDNA viral community from a phyllosphere for the first time. We sampled leaves from winter wheat (Triticum aestivum), where we identified a total of 876 virus operational taxonomic units (vOTUs), mostly predicted to be bacteriophages with a lytic lifestyle. Remarkably, 848 of these vOTUs corresponded to new viral species, and we estimated a minimum of 2.0 × 106 viral particles per leaf. These results suggest that the wheat phyllosphere harbors a large and active community of novel bacterial viruses. Phylloviruses have potential applications as biocontrol agents against phytopathogenic bacteria or as microbiome modulators to increase plant growth-promoting bacteria. Full article
(This article belongs to the Special Issue Viruses in the Environment)
Show Figures

Figure 1

21 pages, 2998 KiB  
Article
Metaviromes Reveal the Dynamics of Pseudomonas Host-Specific Phages Cultured and Uncultured by Plaque Assay
by Katrine Wacenius Skov Alanin, Laura Milena Forero Junco, Jacob Bruun Jørgensen, Tue Kjærgaard Nielsen, Morten Arendt Rasmussen, Witold Kot and Lars Hestbjerg Hansen
Viruses 2021, 13(6), 959; https://doi.org/10.3390/v13060959 - 21 May 2021
Cited by 5 | Viewed by 4493
Abstract
Isolating single phages using plaque assays is a laborious and time-consuming process. Whether single isolated phages are the most lyse-effective, the most abundant in viromes, or those with the highest ability to make plaques in solid media is not well known. With the [...] Read more.
Isolating single phages using plaque assays is a laborious and time-consuming process. Whether single isolated phages are the most lyse-effective, the most abundant in viromes, or those with the highest ability to make plaques in solid media is not well known. With the increasing accessibility of high-throughput sequencing, metaviromics is often used to describe viruses in environmental samples. By extracting and sequencing metaviromes from organic waste with and without exposure to a host-of-interest, we show a host-related phage community’s shift, as well as identify the most enriched phages. Moreover, we isolated plaque-forming single phages using the same virome–host matrix to observe how enrichments in liquid media correspond to the metaviromic data. In this study, we observed a significant shift (p = 0.015) of the 47 identified putative Pseudomonas phages with a minimum twofold change above zero in read abundance when adding a Pseudomonas syringae DC3000 host. Surprisingly, it appears that only two out of five plaque-forming phages from the same organic waste sample, targeting the Pseudomonas strain, were highly abundant in the metavirome, while the other three were almost absent despite host exposure. Lastly, our sequencing results highlight how long reads from Oxford Nanopore elevates the assembly quality of metaviromes, compared to short reads alone. Full article
(This article belongs to the Special Issue Viromics)
Show Figures

Figure 1

23 pages, 7351 KiB  
Article
Exploring the Remarkable Diversity of Culturable Escherichia coli Phages in the Danish Wastewater Environment
by Nikoline S. Olsen, Laura Forero-Junco, Witold Kot and Lars H. Hansen
Viruses 2020, 12(9), 986; https://doi.org/10.3390/v12090986 - 4 Sep 2020
Cited by 34 | Viewed by 5860
Abstract
Phages drive bacterial diversity, profoundly influencing microbial communities, from microbiomes to the drivers of global biogeochemical cycling. Aiming to broaden our understanding of Escherichia coli (MG1655, K-12) phages, we screened 188 Danish wastewater samples and isolated 136 phages. Ninety-two of these have genomic [...] Read more.
Phages drive bacterial diversity, profoundly influencing microbial communities, from microbiomes to the drivers of global biogeochemical cycling. Aiming to broaden our understanding of Escherichia coli (MG1655, K-12) phages, we screened 188 Danish wastewater samples and isolated 136 phages. Ninety-two of these have genomic sequences with less than 95% similarity to known phages, while most map to existing genera several represent novel lineages. The isolated phages are highly diverse, estimated to represent roughly one-third of the true diversity of culturable virulent dsDNA Escherichia phages in Danish wastewater, yet almost half (40%) are not represented in metagenomic databases, emphasising the importance of isolating phages to uncover diversity. Seven viral families, Myoviridae, Siphoviridae, Podoviridae, Drexlerviridae, Chaseviridae, Autographviridae, and Microviridae, are represented in the dataset. Their genomes vary drastically in length from 5.3 kb to 170.8 kb, with a guanine and cytosine (GC) content ranging from 35.3% to 60.0%. Hence, even for a model host bacterium, substantial diversity remains to be uncovered. These results expand and underline the range of coliphage diversity and demonstrate how far we are from fully disclosing phage diversity and ecology. Full article
(This article belongs to the Special Issue Viruses of Microbes 2020: The Latest Conquests on Viruses of Microbes)
Show Figures

Graphical abstract

18 pages, 3614 KiB  
Article
NCBI’s Virus Discovery Hackathon: Engaging Research Communities to Identify Cloud Infrastructure Requirements
by Ryan Connor, Rodney Brister, Jan P. Buchmann, Ward Deboutte, Rob Edwards, Joan Martí-Carreras, Mike Tisza, Vadim Zalunin, Juan Andrade-Martínez, Adrian Cantu, Michael D’Amour, Alexandre Efremov, Lydia Fleischmann, Laura Forero-Junco, Sanzhima Garmaeva, Melissa Giluso, Cody Glickman, Margaret Henderson, Benjamin Kellman, David Kristensen, Carl Leubsdorf, Kyle Levi, Shane Levi, Suman Pakala, Vikas Peddu, Alise Ponsero, Eldred Ribeiro, Farrah Roy, Lindsay Rutter, Surya Saha, Migun Shakya, Ryan Shean, Matthew Miller, Benjamin Tully, Christopher Turkington, Ken Youens-Clark, Bert Vanmechelen and Ben Busbyadd Show full author list remove Hide full author list
Genes 2019, 10(9), 714; https://doi.org/10.3390/genes10090714 - 16 Sep 2019
Cited by 9 | Viewed by 9159
Abstract
A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon [...] Read more.
A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon setting. Ten teams comprised of over 40 participants from six countries, assembled to create a crowd-sourced set of analysis and processing pipelines for a complex biological data set in a three-day event on the San Diego State University campus starting 9 January 2019. Prior to the hackathon, 141,676 metagenomic data sets from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) were pre-assembled into contiguous assemblies (contigs) by NCBI staff. During the hackathon, a subset consisting of 2953 SRA data sets (approximately 55 million contigs) was selected, which were further filtered for a minimal length of 1 kb. This resulted in 4.2 million (Mio) contigs, which were aligned using BLAST against all known virus genomes, phylogenetically clustered and assigned metadata. Out of the 4.2 Mio contigs, 360,000 contigs were labeled with domains and an additional subset containing 4400 contigs was screened for virus or virus-like genes. The work yielded valuable insights into both SRA data and the cloud infrastructure required to support such efforts, revealing analysis bottlenecks and possible workarounds thereof. Mainly: (i) Conservative assemblies of SRA data improves initial analysis steps; (ii) existing bioinformatic software with weak multithreading/multicore support can be elevated by wrapper scripts to use all cores within a computing node; (iii) redesigning existing bioinformatic algorithms for a cloud infrastructure to facilitate its use for a wider audience; and (iv) a cloud infrastructure allows a diverse group of researchers to collaborate effectively. The scientific findings will be extended during a follow-up event. Here, we present the applied workflows, initial results, and lessons learned from the hackathon. Full article
(This article belongs to the Special Issue Viral Diagnostics Using Next-Generation Sequencing)
Show Figures

Figure 1

Back to TopTop