Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Kokila Thirupathi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3004 KiB  
Article
L-lysine Functionalized Mesoporous Silica Hybrid Nanoparticles for pH-Responsive Delivery of Curcumin
by Madhappan Santhamoorthy, Vanaraj Ramkumar, Kokila Thirupathi, Lalitha Gnanasekaran, Vanitha Karuppannan, Thi Tuong Vy Phan and Seong-Cheol Kim
Pharmaceutics 2023, 15(6), 1631; https://doi.org/10.3390/pharmaceutics15061631 - 31 May 2023
Cited by 16 | Viewed by 2626
Abstract
Stimuli-responsive controlled drug delivery systems have attracted the attention of researchers in recent decades due to their potential application in developing efficient drug carriers that are responsive to applied stimuli triggers. In this work, we present the synthesis of L-lysine (an amino acid [...] Read more.
Stimuli-responsive controlled drug delivery systems have attracted the attention of researchers in recent decades due to their potential application in developing efficient drug carriers that are responsive to applied stimuli triggers. In this work, we present the synthesis of L-lysine (an amino acid that combines both amine and carboxylic acid groups in a single unit) modified mesoporous silica nanoparticles (MS@Lys NPs) for the delivery of the anticancer bioactive agent (curcumin, Cur) to cancer cells. To begin, mesoporous silica hybrid nanoparticles (MS@GPTS NPs) with 3-glycidoxypropyl trimethoxy silane (GPTS) were synthesized. The L-lysine groups were then functionalized onto the mesopore channel surfaces of the MS@GPTS NPs through a ring-opening reaction between the epoxy groups of the GPTS and the amine groups of the L-lysine units. Several instrumental techniques were used to examine the structural properties of the prepared L-lysine-modified mesoporous silica nanoparticles (MS@Lys NPs). The drug loading and pH-responsive drug delivery behavior of MS@Lys NPs were studied at different pH levels (pH 7.4, 6.5, and 4.0) using curcumin (Cur) as a model anticancer bioactive agent. The MS@Lys NPs’ in vitro cytocompatibility and cell uptake behavior were also examined using MDA-MB-231 cells. The experimental results imply that MS@Lys NPs might be used in cancer therapy as pH-responsive drug delivery applications. Full article
(This article belongs to the Special Issue Mesoporous Silica Nanoparticles: Smart Delivery Platform)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications
by Madhappan Santhamoorthy, Ramkumar Vanaraj, Kokila Thirupathi, Selvakumari Ulagesan, Taek-Jeong Nam, Thi Tuong Vy Phan and Seong-Cheol Kim
Gels 2023, 9(5), 363; https://doi.org/10.3390/gels9050363 - 25 Apr 2023
Cited by 12 | Viewed by 2639
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified [...] Read more.
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices. Full article
(This article belongs to the Special Issue Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

13 pages, 2951 KiB  
Article
Preparation of Magnetic Iron Oxide Incorporated Mesoporous Silica Hybrid Composites for pH and Temperature-Sensitive Drug Delivery
by Madhappan Santhamoorthy, Kokila Thirupathi, Selvakumar Krishnan, Loganathan Guganathan, Sushma Dave, Thi Tuong Vy Phan and Seong-Cheol Kim
Magnetochemistry 2023, 9(3), 81; https://doi.org/10.3390/magnetochemistry9030081 - 12 Mar 2023
Cited by 26 | Viewed by 2935
Abstract
In clinical applications for cancer treatment, chemotherapy coupled with thermotherapy is highly considered. The development of multifunctional nanocomposite materials is an appealing strategy for use in various applications including biomedical applications. We present the preparation of dopamine-modified mesoporous silica material, in which magnetic [...] Read more.
In clinical applications for cancer treatment, chemotherapy coupled with thermotherapy is highly considered. The development of multifunctional nanocomposite materials is an appealing strategy for use in various applications including biomedical applications. We present the preparation of dopamine-modified mesoporous silica material, in which magnetic iron oxide nanoparticles (FeNP) were grown onto the outer surface via the complexation of iron (Fe(III) and Fe(II)) ions with the dopamine groups modified on the silica hybrid and subsequent chemical reduction approaches. The prepared magnetic iron oxide incorporated with mesoporous silica hybrid composite nanoparticles (FeNP@MSHC NPs) had a large surface area (346 m2/g), pore size (3.2 nm), and pore volume (0.048 cm3/g). The formation of FeNP on the outer surface of the FeNP@MSHC NPs results in superparamagnetic characteristics. Furthermore, the prepared FeNP@MSHC NPs have a high drug (Dox) loading capacity (~62%) as well as pH- and temperature-responsive drug release efficiency. In addition, the MTT assay result shows the biocompatibility of the prepared FeNP@MSHC NPs. As a result, the FeNP@MSHC NPs could be utilized in cancer treatment for pH and temperature-sensitive delivery of chemotherapeutic agents to the target sites. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles: State of the Art and Future Perspectives)
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
Thermosensitive Polymer-Modified Mesoporous Silica for pH and Temperature-Responsive Drug Delivery
by Kokila Thirupathi, Madhappan Santhamoorthy, Sivaprakasam Radhakrishnan, Selvakumari Ulagesan, Taek-Jeong Nam, Thi Tuong Vy Phan and Seong-Cheol Kim
Pharmaceutics 2023, 15(3), 795; https://doi.org/10.3390/pharmaceutics15030795 - 28 Feb 2023
Cited by 31 | Viewed by 3157
Abstract
A mesoporous silica-based drug delivery system (MS@PNIPAm-PAAm NPs) was synthesized by conjugating the PNIPAm-PAAm copolymer onto the mesoporous silica (MS) surface as a gatekeeper that responds to temperature and pH changes. The drug delivery studies are carried out in vitro at different pH [...] Read more.
A mesoporous silica-based drug delivery system (MS@PNIPAm-PAAm NPs) was synthesized by conjugating the PNIPAm-PAAm copolymer onto the mesoporous silica (MS) surface as a gatekeeper that responds to temperature and pH changes. The drug delivery studies are carried out in vitro at different pH (7.4, 6.5, and 5.0) and temperatures (such as 25 °C and 42 °C, respectively). The surface conjugated copolymer (PNIPAm-PAAm) acts as a gatekeeper below the lower critical solution temperature (LCST) (<32 °C) and as a collapsed globule structure above LCST (>32 °C), resulting in controlled drug delivery from the MS@PNIPAm-PAAm system. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular internalization results support the prepared MS@PNIPAm-PAAm NPs being biocompatible and readily taken up by MDA-MB-231 cells. The prepared MS@PNIPAm-PAAm NPs, with their pH-responsive drug release behavior and good biocompatibility, could be used as a drug delivery vehicle where sustained drug release at higher temperatures is required. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

26 pages, 9237 KiB  
Review
Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications
by Kokila Thirupathi, Chaitany Jayaprakash Raorane, Vanaraj Ramkumar, Selvakumari Ulagesan, Madhappan Santhamoorthy, Vinit Raj, Gopal Shankar Krishnakumar, Thi Tuong Vy Phan and Seong-Cheol Kim
Gels 2023, 9(1), 35; https://doi.org/10.3390/gels9010035 - 30 Dec 2022
Cited by 80 | Viewed by 19017
Abstract
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its [...] Read more.
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels)
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
pH and Thermoresponsive PNIPAm-co-Polyacrylamide Hydrogel for Dual Stimuli-Responsive Controlled Drug Delivery
by Kokila Thirupathi, Thi Tuong Vy Phan, Madhappan Santhamoorthy, Vanaraj Ramkumar and Seong-Cheol Kim
Polymers 2023, 15(1), 167; https://doi.org/10.3390/polym15010167 - 29 Dec 2022
Cited by 51 | Viewed by 6245
Abstract
The therapeutic delivery system with dual stimuli-responsiveness has attracted attention for drug delivery to target sites. In this study, we used free radical polymerization to develop a temperature and pH-responsive poly(N-isopropyl acrylamide)-co-poly(acrylamide) (PNIPAM-co-PAAm). PNIPAm-co-PAAm copolymer by reacting with N-isopropyl acrylamide (NIPAm) and acrylamide [...] Read more.
The therapeutic delivery system with dual stimuli-responsiveness has attracted attention for drug delivery to target sites. In this study, we used free radical polymerization to develop a temperature and pH-responsive poly(N-isopropyl acrylamide)-co-poly(acrylamide) (PNIPAM-co-PAAm). PNIPAm-co-PAAm copolymer by reacting with N-isopropyl acrylamide (NIPAm) and acrylamide (Am) monomers. In addition, the synthesized melamine-glutaraldehyde (Mela-Glu) precursor was used as a cross-linker in the production of the melamine cross-linked PNIPAm-co-PAAm copolymer hydrogel (PNIPAm-co-PAAm-Mela HG) system. The temperature-responsive phase transition characteristics of the resulting PNIPAM-co-PAAm-Mela HG systems were determined. Furthermore, the pH-responsive drug release efficiency of curcumin was investigated under various pH and temperature circumstances. Under the combined pH and temperature stimuli (pH 5.0/45 °C), the PNIPAm-co-PAAm-Mela HG demonstrated substantial drug loading (74%), and nearly complete release of the loaded drug was accomplished in 8 h. Furthermore, the cytocompatibility of the PNIPAm-co-PAAm-Mela HG was evaluated on a human liver cancer cell line (HepG2), and the findings demonstrated that the prepared PNIPAm-co-PAAm-Mela HG is biocompatible. As a result, the PNIPAm-co-PAAm-Mela HG system might be used for both pH and temperature-stimuli-responsive drug delivery. Full article
(This article belongs to the Special Issue Polymer Materials for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

10 pages, 2481 KiB  
Article
Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method
by Loganathan Guganathan, Chinnaiyan Rajeevgandhi, Kaliyamurthy Sathiyamurthy, Kokila Thirupathi, Madhappan Santhamoorthy, Ellappan Chinnasamy, Chaitany Jayprakash Raorane, Vinit Raj, Seong-Cheol Kim and Pichapillai Anand
Gels 2022, 8(11), 688; https://doi.org/10.3390/gels8110688 - 25 Oct 2022
Cited by 8 | Viewed by 2214
Abstract
In this manuscript, we present the synthesis of gadolinium orthoferrite nanoparticles using the sol–gel auto-combustion technique. The obtained gadolinium orthoferrite nanoparticles were annealed at various temperatures, such as 800 °C, 900 °C, 1000 °C, and 1100 °C. The synthesized materials were analyzed by [...] Read more.
In this manuscript, we present the synthesis of gadolinium orthoferrite nanoparticles using the sol–gel auto-combustion technique. The obtained gadolinium orthoferrite nanoparticles were annealed at various temperatures, such as 800 °C, 900 °C, 1000 °C, and 1100 °C. The synthesized materials were analyzed by various instrumental characterizations. The vibrational characteristics of the synthesized samples were verified by FTIR. The surface morphology of the gadolinium orthoferrite nanoparticles was analyzed by FE-SEM and HR-TEM, revealing their spherical structural morphology and uniform particle structure. The presence of the elemental features was analyzed in the gadolinium orthoferrite nanoparticles by EDAX. The surface analysis of the core ranges of the XPS-recorded spectra were obtained for the elemental states of the Gd, Fe, and O factors in the samples, and it additionally characterized the different levels of oxidative states by fitting the levels of the high-resolution parameters of Gd 4d, Fe 2p, and O 1s. The magnetic properties of the samples were investigated by VSM. The measurement of the magnetic parameters revealed that gadolinium orthoferrite nanoparticles exhibit a ferromagnetic nature. Full article
Show Figures

Figure 1

14 pages, 2804 KiB  
Article
Thermo-Sensitive Poly (N-isopropylacrylamide-co-polyacrylamide) Hydrogel for pH-Responsive Therapeutic Delivery
by Madhappan Santhamoorthy, Thi Tuong Vy Phan, Vanaraj Ramkumar, Chaitany Jayprakash Raorane, Kokila Thirupathi and Seong-Cheol Kim
Polymers 2022, 14(19), 4128; https://doi.org/10.3390/polym14194128 - 2 Oct 2022
Cited by 53 | Viewed by 5754
Abstract
Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm [...] Read more.
Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG’s thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy. Full article
(This article belongs to the Special Issue Natural Polymer-Based Drug Delivery Complexes against Microorganisms)
Show Figures

Figure 1

Back to TopTop