Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Kirti Arora

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 869 KiB  
Article
Immune Checkpoint Inhibitor Therapy and Associations with Clonal Hematopoiesis
by Abhay Singh, Nuria Mencia Trinchant, Rahul Mishra, Kirti Arora, Smit Mehta, Teodora Kuzmanovic, Maedeh Zokaei Nikoo, Inderpreet Singh, Amanda C. Przespolewski, Mahesh Swaminathan, Marc S. Ernstoff, Grace K. Dy, Lunbiao Yan, Eti Sinha, Shruti Sharma, Duane C. Hassane, Elizabeth A. Griffiths, Eunice Wang, Monica L. Guzman and Swapna Thota
Int. J. Mol. Sci. 2024, 25(20), 11049; https://doi.org/10.3390/ijms252011049 - 15 Oct 2024
Cited by 3 | Viewed by 2124
Abstract
Cancer cohorts are now known to be associated with increased rates of clonal hematopoiesis (CH). We sort to characterize the hematopoietic compartment of patients with melanoma and non-small cell lung cancer (NSCLC) given our recent population level analysis reporting evolving rates of secondary [...] Read more.
Cancer cohorts are now known to be associated with increased rates of clonal hematopoiesis (CH). We sort to characterize the hematopoietic compartment of patients with melanoma and non-small cell lung cancer (NSCLC) given our recent population level analysis reporting evolving rates of secondary leukemias. The advent of immune checkpoint blockade (ICB) has dramatically changed our understanding of cancer biology and has altered the standards of care for patients. However, the impact of ICB on hematopoietic myeloid clonal expansion remains to be determined. We studied if exposure to ICB therapy affects hematopoietic clonal architecture and if their evolution contributed to altered hematopoiesis. Blood samples from patients with melanoma and NSCLC (n = 142) demonstrated a high prevalence of CH. Serial samples (or post ICB exposure samples; n = 25) were evaluated in melanoma and NSCLC patients. Error-corrected sequencing of a targeted panel of genes recurrently mutated in CH was performed on peripheral blood genomic DNA. In serial sample analysis, we observed that mutations in DNMT3A and TET2 increased in size with longer ICB exposures in the melanoma cohort. We also noted that patients with larger size DNMT3A mutations with further post ICB clone size expansion had longer durations of ICB exposure. All serial samples in this cohort showed a statistically significant change in VAF from baseline. In the serial sample analysis of NSCLC patients, we observed similar epigenetic expansion, although not statistically significant. Our study generates a hypothesis for two important questions: (a) Can DNMT3A or TET2 CH serve as predictors of a response to ICB therapy and serve as a novel biomarker of response to ICB therapy? (b) As ICB-exposed patients continue to live longer, the myeloid clonal expansion may portend an increased risk for subsequent myeloid malignancy development. Until now, the selective pressure of ICB/T-cell activating therapies on hematopoietic stem cells were less known and we report preliminary evidence of clonal expansion in epigenetic modifier genes (also referred to as inflammatory CH genes). Full article
(This article belongs to the Special Issue Hematological Malignancies: Molecular Mechanisms and Therapy)
Show Figures

Figure 1

12 pages, 5469 KiB  
Article
Comparative Evaluation of Tensile Bond Strength of Poly Ether Ether Ketone (PEEK) and Zirconia Copings Using Resin Cement with or without Adhesive: An In Vitro Study
by Nimisha Kakkad, Naveen S. Yadav, Puja Hazari, Shweta Narwani, Kirti Somkuwar, Sakeenabi Basha, Varsha Verma, Suraj Arora, Omir Aldowah, Artak Heboyan and Mohmed Isaqali Karobari
Materials 2022, 15(12), 4167; https://doi.org/10.3390/ma15124167 - 12 Jun 2022
Cited by 16 | Viewed by 2715
Abstract
This in vitro research aimed to evaluate the Tensile Bond Strength of Poly Ether Ether Ketone and Zirconia copings using resin cement with or without Visio.link adhesive. From commercially available Zirconia and PEEK, blocks were machined milled using (CAD)/(CAM) to obtain 20 Zirconia [...] Read more.
This in vitro research aimed to evaluate the Tensile Bond Strength of Poly Ether Ether Ketone and Zirconia copings using resin cement with or without Visio.link adhesive. From commercially available Zirconia and PEEK, blocks were machined milled using (CAD)/(CAM) to obtain 20 Zirconia and 20 PEEK copings. These specimens were sandblasted using 110 μm of alumina. The two main groups (20 Zirconia and 20 PEEK copings) were divided further into 4 subgroups, GROUP 1 (n = 10) PEEK substructure with self-adhesive resin cement without pretreatment, and GROUP 2 (n = 10) PEEK substructure with self-adhesive resin cement pre-treated with Visio.link adhesive. GROUP 3 (n = 10) Zirconia copings with self-adhesive resin cement without pretreatment. GROUP 4 (n = 10) Zirconia copings with self-adhesive resin cement pre-treated with Visio.link adhesive. Universal testing machine was used to evaluate the tensile bond strength of these copings. The results were analyzed using SPSS software Version 25.0 (SPSS Inc., Chicago, IL, USA). One-way ANOVA and independent t-test were used to compare the mean scores. Statistically significant increase was observed in Tensile Bond Strength of samples when Visio.link adhesive was used. Tensile Bond Strength of PEEK copings and Zirconia copings with Visio.link adhesive is considerably greater than PEEK copings and Zirconia copings without adhesive. The mean Tensile Bond Strength of Zirconia (with or without adhesive) is less as compared to Tensile Bond Strength of PEEK (with or without adhesive), but the difference is not statistically significant. Full article
Show Figures

Figure 1

44 pages, 2497 KiB  
Review
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions
by Basavantraya N. Devanna, Priyanka Jain, Amolkumar U. Solanke, Alok Das, Shallu Thakur, Pankaj K. Singh, Mandeep Kumari, Himanshu Dubey, Rajdeep Jaswal, Deepak Pawar, Ritu Kapoor, Jyoti Singh, Kirti Arora, Banita Kumari Saklani, Chandrappa AnilKumar, Sheshu Madhav Maganti, Humira Sonah, Rupesh Deshmukh, Rajeev Rathour and Tilak Raj Sharma
J. Fungi 2022, 8(6), 584; https://doi.org/10.3390/jof8060584 - 30 May 2022
Cited by 89 | Viewed by 10944
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses [...] Read more.
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Graphical abstract

36 pages, 6816 KiB  
Review
Status and Prospects of Next-Generation Sequencing Technologies in Crop Plants
by Tilak R. Sharma, Basavantraya N. Devanna, Kanti Kiran, Pankaj K. Singh, Kirti Arora, Priyanka Jain, Ila M. Tiwari, Himanshu Dubey, Banita K. Saklani, Mandeep Kumari, Jyoti Singh, Rajdeep Jaswal, Ritu Kapoor, Deepak V. Pawar, Shruti Sinha, Deepak S. Bisht, Amolkumar U. Solanke and Tapan K. Mondal
Curr. Issues Mol. Biol. 2018, 27(1), 1-36; https://doi.org/10.21775/cimb.027.001 - 8 Sep 2017
Cited by 27 | Viewed by 1046
Abstract
The history of DNA sequencing dates back to 1970s. During this period the two first generation nucleotide sequencing techniques were developed. Subsequently, Sanger's dideoxy method of sequencing gained popularity over Maxam and Gilbert's chemical method of sequencing. However, in the last decade, we [...] Read more.
The history of DNA sequencing dates back to 1970s. During this period the two first generation nucleotide sequencing techniques were developed. Subsequently, Sanger's dideoxy method of sequencing gained popularity over Maxam and Gilbert's chemical method of sequencing. However, in the last decade, we have observed revolutionary changes in DNA sequencing technologies leading to the emergence of next-generation sequencing (NGS) techniques. NGS technologies have enhanced the throughput and speed of sequencing combined with bringing down the overall cost of the process over a time. The major applications of NGS technologies being genome sequencing and resequencing, transcriptomics, metagenomics in relation to plant-microbe interactions, exon and genome capturing, development of molecular markers and evolutionary studies. In this review, we present a broader picture of evolution of NGS tools, its various applications in crop plants, and future prospects of the technology for crop improvement. Full article
Back to TopTop