Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Karelyn Davis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 594 KiB  
Article
Early Experience Analyzing Dietary Intake Data from the Canadian Community Health Survey—Nutrition Using the National Cancer Institute (NCI) Method
by Karelyn A. Davis, Alejandro Gonzalez, Lidia Loukine, Cunye Qiao, Alireza Sadeghpour, Michel Vigneault, Kuan Chiao Wang and Dominique Ibañez
Nutrients 2019, 11(8), 1908; https://doi.org/10.3390/nu11081908 - 15 Aug 2019
Cited by 19 | Viewed by 4464
Abstract
Background: One of the underpinning elements to support evidence-based decision-making in food and nutrition is the usual dietary intake of a population. It represents the long-run average consumption of a particular dietary component (i.e., food or nutrient). Variations in individual eating habits are [...] Read more.
Background: One of the underpinning elements to support evidence-based decision-making in food and nutrition is the usual dietary intake of a population. It represents the long-run average consumption of a particular dietary component (i.e., food or nutrient). Variations in individual eating habits are observed from day-to-day and between individuals. The National Cancer Institute (NCI) method uses statistical modeling to account for these variations in estimation of usual intakes. This method was originally developed for nutrition survey data in the United States. The main objective of this study was to apply the NCI method in the analysis of Canadian nutrition surveys. Methods: Data from two surveys, the 2004 and 2015 Canadian Community Health Survey—Nutrition were used to estimate usual dietary intake distributions from food sources using the NCI method. The effect of different statistical considerations such as choice of the model, covariates, stratification compared to pooling, and exclusion of outliers were assessed, along with the computational time to convergence. Results: A flowchart to aid in model selection was developed. Different covariates (e.g., age/sex groups, cycle, weekday/weekend of the recall) were used to adjust the estimates of usual intakes. Moreover, larger differences in the ratio of within to between variation for a stratified analysis or a pooled analysis resulted in noticeable differences, particularly in the tails of the distribution of usual intake estimates. Outliers were subsequently removed when the ratio was larger than 10. For an individual age/sex group, the NCI method took 1 h–5 h to obtain results depending on the dietary component. Conclusion: Early experience in using the NCI method with Canadian nutrition surveys data led to the development of a flowchart to facilitate the choice of the NCI model to use. The ability of the NCI method to include covariates permits comparisons between both 2004 and 2015. This study shows that the improper application of pooling and stratification as well as the outlier detection can lead to biased results. This early experience can provide guidance to other researchers and ensures consistency in the analysis of usual dietary intake in the Canadian context. Full article
Show Figures

Figure 1

17 pages, 391 KiB  
Article
Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)
by Carlyn J. Matz, David M. Stieb, Karelyn Davis, Marika Egyed, Andreas Rose, Benedito Chou and Orly Brion
Int. J. Environ. Res. Public Health 2014, 11(2), 2108-2124; https://doi.org/10.3390/ijerph110202108 - 19 Feb 2014
Cited by 271 | Viewed by 13775
Abstract
Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data [...] Read more.
Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents. Full article
Show Figures

Figure 1

Back to TopTop