Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Authors = Junsu Yu ORCID = 0000-0002-2746-0213

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10014 KiB  
Review
Architecture and Process Integration Overview of 3D NAND Flash Technologies
by Geun Ho Lee, Sungmin Hwang, Junsu Yu and Hyungjin Kim
Appl. Sci. 2021, 11(15), 6703; https://doi.org/10.3390/app11156703 - 21 Jul 2021
Cited by 62 | Viewed by 33045
Abstract
In the past few decades, NAND flash memory has been one of the most successful nonvolatile storage technologies, and it is commonly used in electronic devices because of its high scalability and reliable switching properties. To overcome the scaling limit of planar NAND [...] Read more.
In the past few decades, NAND flash memory has been one of the most successful nonvolatile storage technologies, and it is commonly used in electronic devices because of its high scalability and reliable switching properties. To overcome the scaling limit of planar NAND flash arrays, various three-dimensional (3D) architectures of NAND flash memory and their process integration methods have been investigated in both industry and academia and adopted in commercial mass production. In this paper, 3D NAND flash technologies are reviewed in terms of their architecture and fabrication methods, and the advantages and disadvantages of the architectures are compared. Full article
(This article belongs to the Special Issue New Aspects of Si-Based Material and Device)
Show Figures

Figure 1

9 pages, 4322 KiB  
Article
Investigation on Ambipolar Current Suppression Using a Stacked Gate in an L-shaped Tunnel Field-Effect Transistor
by Junsu Yu, Sihyun Kim, Donghyun Ryu, Kitae Lee, Changha Kim, Jong-Ho Lee, Sangwan Kim and Byung-Gook Park
Micromachines 2019, 10(11), 753; https://doi.org/10.3390/mi10110753 - 3 Nov 2019
Cited by 11 | Viewed by 4594
Abstract
L-shaped tunnel field-effect transistor (TFET) provides higher on-current than a conventional TFET through band-to-band tunneling in the vertical direction of the channel. However, L-shaped TFET is disadvantageous for low-power applications because of increased off-current due to the large ambipolar current. In this paper, [...] Read more.
L-shaped tunnel field-effect transistor (TFET) provides higher on-current than a conventional TFET through band-to-band tunneling in the vertical direction of the channel. However, L-shaped TFET is disadvantageous for low-power applications because of increased off-current due to the large ambipolar current. In this paper, a stacked gate L-shaped TFET is proposed for suppression of ambipolar current. Stacked gates can be easily implemented using the structural features of L-shaped TFET, and on- and off-current can be controlled separately by using different gates located near the source and the drain, respectively. As a result, the suppression of ambipolarity is observed with respect to work function difference between two gates by simulation of the band-to-band tunneling generation. Furthermore, the proposed device suppresses ambipolar current better than existing ambipolar current suppression methods. In particular, low drain resistance is achieved as there is no need to reduce drain doping, which leads to a 7% enhanced on-current. Finally, we present the fabrication method for a stacked gate L-shaped TFET. Full article
(This article belongs to the Special Issue Extremely-Low-Power Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop