Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Hosni Ghazala ORCID = 0000-0003-3182-0071

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8505 KiB  
Article
Mapping Groundwater Potential Zones in the Widyan Basin, Al Qassim, KSA: Analytical Hierarchy Process-Based Analysis Using Sentinel-2, ASTER-DEM, and Conventional Data
by Ragab A. El Sherbini, Hosni H. Ghazala, Mohammed A. Ahmed, Ismael M. Ibraheem, Hussain F. Al Ajmi and Mohamed A. Genedi
Remote Sens. 2025, 17(5), 766; https://doi.org/10.3390/rs17050766 - 22 Feb 2025
Cited by 2 | Viewed by 1568
Abstract
Groundwater availability in semi-arid regions like the Widyan Basin, the Kingdom of Saudi Arabia (KSA), is a critical challenge due to climatic, topographic, and hydrological variations. The accurate identification of groundwater zones is essential for sustainable development. Therefore, this study combines remote-sensing datasets [...] Read more.
Groundwater availability in semi-arid regions like the Widyan Basin, the Kingdom of Saudi Arabia (KSA), is a critical challenge due to climatic, topographic, and hydrological variations. The accurate identification of groundwater zones is essential for sustainable development. Therefore, this study combines remote-sensing datasets (Sentinel-2 and ASTER-DEM) with conventional data using Geographic Information System (GIS) and analytical hierarchy process (AHP) techniques to delineate groundwater potential zones (GWPZs). The basin’s geology includes Pre-Cambrian rock units of the Arabian Shield in the southwest and Cambrian–Ordovician units in the northeast, with the Saq Formation serving as the main groundwater aquifer. Six soil types were identified: Haplic and Calcic Yermosols, Calcaric Regosols, Cambic Arenosols, Orthic Solonchaks, and Lithosols. The topography varies from steep areas in the southwest and northwest to nearly flat terrain in the northeast. Hydrologically, the basin is divided into 28 sub-basins with four stream orders. Using GIS-based AHP and weighted overlay methods, the GWPZs were mapped, achieving a model consistency ratio of 0.0956. The zones were categorized as excellent (15.21%), good (40.85%), fair (43.94%), and poor (0%). The GWPZ model was validated by analyzing data from 48 water wells distributed in the study area. These wells range from fresh water to primary saline water, with water depths varying between 13.98 and 130 m. Nine wells—with an average total dissolved solids (TDS) value of 597.2 mg/L—fall within the excellent zone, twenty-one wells are categorized in the good zone, fifteen wells are classified in the fair zone, and the remaining wells fall into the poor zone, with TDS values reaching up to 2177 mg/L. The results indicate that the central zone of the study area is suitable for drilling new water wells. Full article
Show Figures

Figure 1

20 pages, 10751 KiB  
Article
Applying Geomatics Techniques for Documenting Heritage Buildings in Aswan Region, Egypt: A Case Study of the Temple of Abu Simbel
by AbdElhamid Elbshbeshi, Ahmed Gomaa, Abdelmonem Mohamed, Amal Othman, Ismael M. Ibraheem and Hosni Ghazala
Heritage 2023, 6(1), 742-761; https://doi.org/10.3390/heritage6010040 - 16 Jan 2023
Cited by 12 | Viewed by 12322
Abstract
It has recently become more popular to involve 3-D modeling and digital documentation in the conservation and restoration of heritage sites. The main objective of the current study is to develop a digital documentation process using laser scanning for Abu Simbel Temple, which [...] Read more.
It has recently become more popular to involve 3-D modeling and digital documentation in the conservation and restoration of heritage sites. The main objective of the current study is to develop a digital documentation process using laser scanning for Abu Simbel Temple, which is one of the most famous archaeological sites in Egypt. We focus on these techniques to replace traditional methods of building heritage documentation. To create the 3-D model with geographic coordinates and measure the rate of deformation, a precise geodetic network of five points was established around the temple. Then, 52 scans of the temple facade and its interior parts were taken using a Trimble TX6 laser scanner. This led to the creation of a 3-D digital model of the temple that includes geometric, structural, architectural, historical data, and non-engineering information (such as appearance, inscriptions, and material details). The 3-D point cloud model outputs exhibit a 6 mm spacing between the points with an error of 4 mm and a standard deviation of 5 mm. In addition, the temple’s virtual tour included 61 panoramic images. This virtual tour can help to increase heritage awareness, promote tourism, and aid in the future restoration of any parts vulnerable to damage. Full article
(This article belongs to the Special Issue Geophysical Surveys for Heritage and Archaeology)
Show Figures

Figure 1

18 pages, 10264 KiB  
Article
Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified DRASTIC-LU Model for Sustainable Development in the Nile Delta Region
by Nesma A. Arafa, Zenhom El-Said Salem, Mahmoud A. Ghorab, Shokry A. Soliman, Abdelaziz L. Abdeldayem, Yasser M. Moustafa and Hosni H. Ghazala
Sustainability 2022, 14(22), 14699; https://doi.org/10.3390/su142214699 - 8 Nov 2022
Cited by 16 | Viewed by 2733
Abstract
The groundwater resources in the Nile Delta region are an important resource for freshwater because of rising water demand due to anthropogenic activities. The goal of this study is to quantify groundwater sensitivity to pollution in the Nile Delta by a modified GIS-based [...] Read more.
The groundwater resources in the Nile Delta region are an important resource for freshwater because of rising water demand due to anthropogenic activities. The goal of this study is to quantify groundwater sensitivity to pollution in the Nile Delta by a modified GIS-based DRASTIC-LU model. In this study, we utilized two types of modified DRASTIC-LU models, generic and pesticide, to determine the groundwater vulnerability rates to contamination. The results of the generic DRASTIC-LU model showed that the research region, except for the northwestern part with moderate vulnerability of 3.38%, is highly and very highly vulnerable to pollution with 42.69 and 53.91%, respectively. Results from the pesticide DRASTIC-LU model, on the other hand, also confirmed that, except for the northwestern and southern parts with a moderate vulnerability of 9.78%, most the Nile Delta is highly and very highly vulnerable with 50.68 and 39.53%, respectively. A validation of the model generated was conducted based on nitrate concentrations in the groundwater and a sensitivity analysis. Based on the nitrate analysis, the final output map showed a strong association with the pesticide vulnerability model. Examining the model sensitivity revealed that the influence of depth to water and net recharge were the most important factors to consider. Full article
Show Figures

Figure 1

23 pages, 6467 KiB  
Article
Lateral Constrained Inversion of DC-Resistivity Data Observed at the Area North of Tenth of Ramadan City, Egypt for Groundwater Exploration
by Mohamed Genedi, Hosni Ghazala, Adel Mohamed, Usama Massoud and Bülent Tezkan
Geosciences 2021, 11(6), 248; https://doi.org/10.3390/geosciences11060248 - 7 Jun 2021
Cited by 8 | Viewed by 3279
Abstract
In the arid climate area north of Tenth of Ramadan City, southeast of the Nile Delta, Egypt, it is necessary to search for additional water resources for sustainable developments such as agricultural and industrial activities. Thirty two vertical electrical soundings (VES) of a [...] Read more.
In the arid climate area north of Tenth of Ramadan City, southeast of the Nile Delta, Egypt, it is necessary to search for additional water resources for sustainable developments such as agricultural and industrial activities. Thirty two vertical electrical soundings (VES) of a electrical resistivity (DC) survey were carried out along four main profiles by using the Schlumberger array with electrode distances (AB/2) up to 500 m, to explore the shallow Pleistocene groundwater aquifer. The collected data was interpreted by a one-dimensional laterally constrained inversion (1D-LCI) and two-dimensional inversion algorithms to derive a best fit layered-earth resistivity model. The derived resistivity sections are geologically well interpreted based on information taken from the available water boreholes (P2-Well and P3-Well). The lateral constraints are part of the inversion where all data sets are inverted simultaneously, and consequently the output models are balanced between the constraints and the data-model fit. The 1D-LCI offers good analysis of the model parameters, which was successfully used to characterize a zone of groundwater aquifer, as it produces a laterally smooth model with sharp layer boundaries. The 1D-LCI inversion results show that the study area is subdivided into five geo-electrical layers of varied resistivity and thickness. In particular, the resistivity values of the last layer range between 9.3 and 110 Ωm representing the existing shallow Pleistocene aquifer located at depths between 134.5 and 118.4 m. Such results are tied and confirmed well with the results of the 2D inversion of the DC data. It reveals three interpreted geo-electric layers along the four profiles and shows that the area is affected by some normal faults striking nearly in the E–W direction. The very low resistivities of the groundwater aquifer beneath the agricultural part of the survey area probably indicates contamination due to the possible effect of irrigation operated in the cultivated lowlands. The results obtained could help the stakeholder to find additional information about the ground water aquifers in the newly reclaimed arid area and possible locations of new sites for drilling new water wells as additional water resources. Full article
Show Figures

Figure 1

Back to TopTop