Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Enock Mwizerwa ORCID = 0000-0002-7439-9064

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2367 KiB  
Article
Mathematical Modelling of Tuberculosis Outbreak in an East African Country Incorporating Vaccination and Treatment
by Kayode Oshinubi, Olumuyiwa James Peter, Emmanuel Addai, Enock Mwizerwa, Oluwatosin Babasola, Ifeoma Veronica Nwabufo, Ibrahima Sane, Umar Muhammad Adam, Adejimi Adeniji and Janet O. Agbaje
Computation 2023, 11(7), 143; https://doi.org/10.3390/computation11070143 - 17 Jul 2023
Cited by 36 | Viewed by 4648
Abstract
In this paper, we develop a deterministic mathematical epidemic model for tuberculosis outbreaks in order to study the disease’s impact in a given population. We develop a qualitative analysis of the model by showing that the solution of the model is positive and [...] Read more.
In this paper, we develop a deterministic mathematical epidemic model for tuberculosis outbreaks in order to study the disease’s impact in a given population. We develop a qualitative analysis of the model by showing that the solution of the model is positive and bounded. The global stability analysis of the model uses Lyapunov functions and the threshold quantity of the model, which is the basic reproduction number is estimated. The existence and uniqueness analysis for Caputo fractional tuberculosis outbreak model is presented by transforming the deterministic model to a Caputo sense model. The deterministic model is used to predict real data from Uganda and Rwanda to see how well our model captured the dynamics of the disease in the countries considered. Furthermore, the sensitivity analysis of the parameters according to R0 was considered in this study. The normalised forward sensitivity index is used to determine the most sensitive variables that are important for infection control. We simulate the Caputo fractional tuberculosis outbreak model using the Adams–Bashforth–Moulton approach to investigate the impact of treatment and vaccine rates, as well as the disease trajectory. Overall, our findings imply that increasing vaccination and especially treatment availability for infected people can reduce the prevalence and burden of tuberculosis on the human population. Full article
Show Figures

Figure 1

Back to TopTop