Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Davide Caliò ORCID = 0000-0003-3723-3230

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 27311 KiB  
Article
Digital Rock Mass Analysis for the Evaluation of Rockfall Magnitude at Poorly Accessible Cliffs
by Davide Caliò, Simone Mineo and Giovanna Pappalardo
Remote Sens. 2023, 15(6), 1515; https://doi.org/10.3390/rs15061515 - 9 Mar 2023
Cited by 20 | Viewed by 3854
Abstract
The analysis of a digital rock cliff model, built by airborne photogrammetric data and infrared thermal images, is herein presented as an alternative tool for rock mass study in restricted and poorly accessible areas. Photogrammetric and infrared thermography techniques were combined for the [...] Read more.
The analysis of a digital rock cliff model, built by airborne photogrammetric data and infrared thermal images, is herein presented as an alternative tool for rock mass study in restricted and poorly accessible areas. Photogrammetric and infrared thermography techniques were combined for the geostructural and morphological characterization of an unstable cliff located in a nature reserve, where the rock mass extension and the environmental preservation rules required the use of minimally invasive surveying solutions. This methodological approach provided quantitative and qualitative data on both the spatial orientation of discontinuities and the location of major structural features, jutting blocks and past rockfall source areas. The digitally derived spatial data were used to carry out a rock mass kinematic analysis, highlighting the most recurring unstable failure patterns. Thermal images were overlapped to the photogrammetric cliff model to exploit the data combination and to analyze the presence of protruding rock mass volumes to be referred to as potential unstable volumes. Based on this activity, rock volumes were quantified on the digital model and the results were used to provide a zonation map of the potential magnitude of future rockfalls threatening the reserve. Digital data were validated by a field surveying campaign, which returned a satisfactory match, proving the usefulness and suitability of the approach, as well as allowing the quick and reliable rock mass characterization in the frame of practical use and risk management purposes. Full article
(This article belongs to the Special Issue Remote Sensing for Rock Slope and Rockfall Analysis)
Show Figures

Figure 1

21 pages, 6455 KiB  
Article
Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography
by Giovanna Pappalardo, Simone Mineo, Davide Caliò and Annamaria Bognandi
Heritage 2022, 5(3), 2594-2614; https://doi.org/10.3390/heritage5030135 - 6 Sep 2022
Cited by 25 | Viewed by 4781
Abstract
The application of non-contact diagnostic methodologies is the current challenge in the frame of the cultural heritage, referred to as preservation, monitoring and restoration. Inspired by the potential shown by infrared thermography in rock mechanics’ non-destructive applications, this paper presents the results achieved [...] Read more.
The application of non-contact diagnostic methodologies is the current challenge in the frame of the cultural heritage, referred to as preservation, monitoring and restoration. Inspired by the potential shown by infrared thermography in rock mechanics’ non-destructive applications, this paper presents the results achieved by its use for the quick survey of different weathering types affecting natural stones at historical buildings. Infrared thermography allowed recognizing and mapping the different surface temperatures arising from the presence of efflorescence, subflorescence, alveolization, black crusts and bioweathering at limestone and basalt stones. Infrared data were sided by photogrammetric three-dimensional models of surveyed spots, which provided quantitative data on the thickness of rock affected by mechanical weathering, and key correspondence between the two techniques is highlighted. Achieved results show that infrared outcomes are related to different aspects primarily involving the stone face morphology and color, as well as the environmental conditions at the surveying time. Provided interpretations were validated by field visual inspections, which confirmed the good potential of infrared thermography as a quick weathering diagnostic tool. This study can be therefore considered a starting reference for knowledge development in this scientific field. Full article
(This article belongs to the Special Issue Decay and Conservation Studies of Building Mortars and Stones)
Show Figures

Figure 1

17 pages, 5885 KiB  
Article
Interaction between Rockfalls and Vehicles Studied for Speed Limit Zonation along Mountainous Roads
by Giovanna Pappalardo, Davide Caliò and Simone Mineo
Appl. Sci. 2022, 12(9), 4096; https://doi.org/10.3390/app12094096 - 19 Apr 2022
Cited by 2 | Viewed by 2272
Abstract
A rockfall risk assessment along the transportation route to a historical village is presented herein with the aim of evaluating the potential of this approach for speed limit zonation. Mountainous roads are often subject to rockfalls, which should be taken into account for [...] Read more.
A rockfall risk assessment along the transportation route to a historical village is presented herein with the aim of evaluating the potential of this approach for speed limit zonation. Mountainous roads are often subject to rockfalls, which should be taken into account for territorial management and planning, especially when dealing with dynamic variables, such as vehicular traffic. Rockfall risk analysis along roads is often aimed at assessing a risk value to plan or prioritize mitigation purposes. Nevertheless, such approaches can also be used to regulate traffic in terms of posted speed limits. Traffic is, indeed, a key variable in rockfall risk analysis due to the spatial and temporal correspondence that a vehicle can have with an either falling or fallen rock block. In order to address this relationship for speed limit zonation purposes, in this paper, a semi-quantitative Rockfall Hazard Rating System was applied to a mountainous road leading to a popular tourist destination in eastern Sicily (Italy), which is characterized by winding paths. This approach, which was chosen for its feasibility and international diffusion, was repeated by taking five different vehicle speed scenarios into account, thus providing an innovative application of the procedure in terms of aims and practical results. The achieved outcomes were used to draft thematic maps, as well as to define a suitable speed limit zonation related to the rockfall risk, highlighting that the road visibility strongly affects the final results. The achieved outcomes demonstrate how a scientific approach can be turned into a practical tool of broad utility, especially in mountainous settings, where winding roads and rockfall problems often condition the viability. Full article
(This article belongs to the Special Issue Advances in Engineering Geology of Rocks and Rock Masses)
Show Figures

Figure 1

19 pages, 13385 KiB  
Article
UAV-Based Photogrammetry and Infrared Thermography Applied to Rock Mass Survey for Geomechanical Purposes
by Simone Mineo, Davide Caliò and Giovanna Pappalardo
Remote Sens. 2022, 14(3), 473; https://doi.org/10.3390/rs14030473 - 19 Jan 2022
Cited by 44 | Viewed by 5376
Abstract
A research study aimed at the extending the means of estimating ISRM (International Society for Rock Mechanics) geomechanical parameters through non-contact methodologies, in the frame of the remote survey of rock masses, is herein presented. It was conducted by coupling UAV-based photogrammetry and [...] Read more.
A research study aimed at the extending the means of estimating ISRM (International Society for Rock Mechanics) geomechanical parameters through non-contact methodologies, in the frame of the remote survey of rock masses, is herein presented. It was conducted by coupling UAV-based photogrammetry and Infrared Thermography. Starting from georeferenced UAV surveys and the definition of rock masses’ RGB point clouds, different approaches for the extraction of discontinuity spatial data were herein compared according to the ISRM subjective and objective discontinuity sampling criteria. These were applied to a survey a window and along a scanline, both defined on the dense point clouds, to simulate a field rock mass survey, although carried out on remotely acquired data. Spatial discontinuity data were integrated via the analysis of dense point clouds built from IRT images, which represents a relatively new practice in remote sensing, and the processing of thermograms. Such procedures allowed the qualitative evaluation of the main geomechanical parameters of tested rock masses, such as aperture, persistence and weathering. Moreover, the novel parameters of Thermal-spacing (T-spacing) and Thermal-RQD (T-RQD) are herein introduced in a tentative attempt at extending the application field of IRT to remote rock mass surveys for practical purposes. The achieved results were validated by field campaign, demonstrating that a remote survey of rock masses can be conducted according to the ISRM procedures even on models built by integrating RGB and IRT photogrammetry. In fact, these two technologies are positively complementary and, besides being feasible, are characterized by a relatively quick and non-contact execution. Thanks to the positive and satisfactory results achieved herein, this research contributes to the implementation of the scientific and technical casuistry on the remote survey of rock masses, which is a technical field offering a wide range of applications. Full article
Show Figures

Figure 1

Back to TopTop