Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = David Kubizňák

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
71 pages, 1418 KiB  
Article
Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume
by Natacha Altamirano, David Kubizňák, Robert B. Mann and Zeinab Sherkatghanad
Galaxies 2014, 2(1), 89-159; https://doi.org/10.3390/galaxies2010089 - 3 Mar 2014
Cited by 371 | Viewed by 12623
Abstract
In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically [...] Read more.
In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum) ensemble. We plot the associated thermodynamic potential—the Gibbs free energy—and study its behavior to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the “every day thermodynamics” of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the van derWaals type. Furthermore, the reentrant phase transitions also occur for multiply-spinning asymptotically flat Myers–Perry black holes. These phenomena do not require a variable cosmological constant, though they are more naturally understood in the context of the extended phase space. The thermodynamic volume, a quantity conjugate to the thermodynamic pressure, is studied for AdS black rings and demonstrated to satisfy the reverse isoperimetric inequality; this provides a first example of calculation confirming the validity of isoperimetric inequality conjecture for a black hole with non-spherical horizon topology. The equation of state P = P(V,T) is studied for various black holes both numerically and analytically—in the ultraspinning and slow rotation regimes. Full article
(This article belongs to the Special Issue Aspects of Black Hole Physics)
Show Figures

Figure 1

Back to TopTop