Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Colette Lacabanne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3963 KiB  
Article
Mechanical Properties of Surface-Treated Bamboo Strip-Reinforced Biobased Polyamide Composites
by Clément Pébère, Gautier Mangeret, Eric Dantras, Colette Lacabanne, Jany Dandurand, Thomas Moussiegt, Edouard Sherwood and Gilles Hochstetter
Polymers 2025, 17(10), 1379; https://doi.org/10.3390/polym17101379 - 17 May 2025
Viewed by 506
Abstract
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the [...] Read more.
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the concentration of NaOH solution treatment was analyzed. The thermogravimetric analysis highlighted that the mercerization treatment removes part of hemicellulose, low molecular weight lignin and amorphous cellulose, while crystalline cellulose is preserved. Dynamic mechanical analysis performed in the shear configuration revealed the level of interactions between bamboo strips and PA11-FR matrix. The glassy modulus was improved for the composites compared to the matrix and their rubbery modulus was increased by a factor 4.6. Composites with bamboo strips treated at 1% NaOH showed the highest shear modulus across the entire temperature range with an increase by a factor of 1.39 on the glassy plateau and 1.3 on the rubbery plateau, with the untreated bamboo strips/polyamide 11-FR composite as reference. Water uptake was analogous for composites and bamboo strips, so the shear modulus at room temperature was not impacted by moisture. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2175 KiB  
Article
Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite
by Louise Lods, Tutea Richmond, Jany Dandurand, Eric Dantras, Colette Lacabanne, Jean-Michel Durand, Edouard Sherwood, Gilles Hochstetter and Philippe Ponteins
Polymers 2022, 14(2), 299; https://doi.org/10.3390/polym14020299 - 12 Jan 2022
Cited by 8 | Viewed by 2736
Abstract
A biobased composite was generated from bamboo fibers (BF) and a polyamide 11 (PA11) matrix. In order to fulfill security requirements, a PA11 already containing a flame retardant (FR) was chosen: This matrix is referred as PA11-FR. In this work, the effects of [...] Read more.
A biobased composite was generated from bamboo fibers (BF) and a polyamide 11 (PA11) matrix. In order to fulfill security requirements, a PA11 already containing a flame retardant (FR) was chosen: This matrix is referred as PA11-FR. In this work, the effects of flame retardant (melamine cyanurate) on the composite properties were considered. In the calorimetric study, the glass transition and melting temperatures of PA11-FR were the same as those of PA11. The melamine cyanurate (MC) had no influence on these parameters. Thermogravimetric analysis revealed that PA11-FR was less stable than PA11. The presence of MC facilitated thermal decomposition regardless of the analysis atmosphere used. It is important to note that the presence of FR did not influence processing conditions (especially the viscosity parameter) for the biosourced composite. Continuous BF-reinforced PA 11-FR composites, single ply, with 60% of fibers were processed and analyzed using dynamic mechanical analysis. In shear mode, comparative data recorded for BF/PA11-FR composite and the PA11-FR matrix demonstrated that the shear glassy modulus was significantly improved: multiplied by a factor of 1.6 due to the presence of fibers. This result reflected hydrogen bonding between reinforcing fibers and the matrix, resulting in a significant transfer of stress. In tensile mode, the conservative modulus of BF/PA11-FR reached E’ = 8.91 GPa. Upon BF introduction, the matrix tensile modulus was multiplied by 5.7. It can be compared with values of a single bamboo fiber recorded under the same experimental conditions: 31.58 GPa. The difference is partly explained by the elementary fibers’ lack of alignment in the composite. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 589 KiB  
Article
The Use of Thermal Techniques for the Characterization and Selection of Natural Biomaterials
by Valérie Samouillan, Florian Delaunay, Jany Dandurand, Nofel Merbahi, Jean-Pierre Gardou, Mohammed Yousfi, Alessandro Gandaglia, Michel Spina and Colette Lacabanne
J. Funct. Biomater. 2011, 2(3), 230-248; https://doi.org/10.3390/jfb2030230 - 13 Sep 2011
Cited by 85 | Viewed by 10129
Abstract
In this paper we explore the ability of thermal analysis to check elastin and collagen integrity in different biomaterial applications. Differential Scanning Calorimetry (DSC) has been used to analyze the first and second order transitions of the biological macromolecules in the hydrated and [...] Read more.
In this paper we explore the ability of thermal analysis to check elastin and collagen integrity in different biomaterial applications. Differential Scanning Calorimetry (DSC) has been used to analyze the first and second order transitions of the biological macromolecules in the hydrated and dehydrated state. First, we report the characterization of control cardiovascular tissues such as pericardium, aortic wall and valvular leaflet. Their thermal properties are compared to pure elastin and pure collagen. Second, we present results obtained on two collagen rich tissues: pericardia with different chemical treatments and collagen with physical treatments. Finally, more complex cardiovascular tissues composed of elastin and collagen are analyzed and the effect of detergent treatment on the physical structure of collagen and elastin is brought to the fore. Full article
Show Figures

Back to TopTop