Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Binbing Mao

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2352 KiB  
Article
Research on Improving the Avalanche Current Limit of Parallel SiC MOSFETs
by Hua Mao, Binbing Wu, Xinsheng Lan, Yalong Xia, Junjie Chen and Lei Tang
Electronics 2025, 14(13), 2502; https://doi.org/10.3390/electronics14132502 - 20 Jun 2025
Viewed by 458
Abstract
The transient overvoltage caused by coupling of loop inductance during rapid turn off of a silicon carbide metal-oxide-semiconductor field-effect transistor (SiC MOSFET) can easily induce avalanche breakdown. Meanwhile, the instantaneous high-density heat flux generated by energy dissipation can create significant electrothermal coupling stress, [...] Read more.
The transient overvoltage caused by coupling of loop inductance during rapid turn off of a silicon carbide metal-oxide-semiconductor field-effect transistor (SiC MOSFET) can easily induce avalanche breakdown. Meanwhile, the instantaneous high-density heat flux generated by energy dissipation can create significant electrothermal coupling stress, potentially leading to device failure under severe conditions. To address the issue that the multi-chip parallel structure of power modules cannot linearly enhance avalanche withstand capability, an innovative device screening method based on parameter matching is proposed in this paper. The effectiveness of the proposed solution is verified through experiments, with the total current limit of dual-tube parallel devices and three-tube parallel devices achieving 1.9 times and 2.4 times that of single-tube devices, respectively. This research is of great significance for improving safe and reliable operation of the system. Full article
Show Figures

Figure 1

14 pages, 3447 KiB  
Article
Numerical Analysis of Passive Piles under Surcharge Load in Extensively Deep Soft Soil
by Meixiang Gu, Xiaocong Cai, Qiang Fu, Haibo Li, Xi Wang and Binbing Mao
Buildings 2022, 12(11), 1988; https://doi.org/10.3390/buildings12111988 - 16 Nov 2022
Cited by 48 | Viewed by 3085
Abstract
The three-dimensional finite difference method was used in this study to analyze the deformation and stresses of a passive pile under surcharge load in extensively deep soft soil. A three-dimensional numerical model was proposed and verified by a field test. The horizontal displacements [...] Read more.
The three-dimensional finite difference method was used in this study to analyze the deformation and stresses of a passive pile under surcharge load in extensively deep soft soil. A three-dimensional numerical model was proposed and verified by a field test. The horizontal displacements of the pile agreed well with the field results. This study investigated the pile-foundation soil interaction, the load transfer mechanism, the excess pore water pressure (EPWP), and the horizontal resistance of the foundation soil. The results show that the soil in the corner of the loading area developed a large uplift deformation, while the center of the loading area developed a large settlement. The lateral displacement of the pile decreased sharply with the increase of the depth and increased with the surcharge load. The lateral displacement of the soil was negligible when the depth exceeded 30 m. The EPWP increased in a nonlinear way with the increase of the surcharge load and accumulated with the placement of the new lift. The distribution of the lateral earth pressure in the shallow soil layer was complex, and the negative value was observed under a high surcharge load due to the suction effect. The proportion coefficient of the horizontal resistance coefficient showed much smaller value in the situation of large lateral deformation and high surcharge load. The design code overestimated the horizontal resistance of the shallow foundation soil, which should be given attention for the design and analysis of the laterally loaded structures in extensively soft soil. Full article
(This article belongs to the Collection Innovation of Materials and Technologies in Civil Construction)
Show Figures

Figure 1

Back to TopTop