Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Balqis Alrababah

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2109 KiB  
Article
A Deep Learning Framework for Detection of COVID-19 Fake News on Social Media Platforms
by Yahya Tashtoush, Balqis Alrababah, Omar Darwish, Majdi Maabreh and Nasser Alsaedi
Data 2022, 7(5), 65; https://doi.org/10.3390/data7050065 - 13 May 2022
Cited by 43 | Viewed by 7715
Abstract
The fast growth of technology in online communication and social media platforms alleviated numerous difficulties during the COVID-19 epidemic. However, it was utilized to propagate falsehoods and misleading information about the disease and the vaccination. In this study, we investigate the ability of [...] Read more.
The fast growth of technology in online communication and social media platforms alleviated numerous difficulties during the COVID-19 epidemic. However, it was utilized to propagate falsehoods and misleading information about the disease and the vaccination. In this study, we investigate the ability of deep neural networks, namely, Long Short-Term Memory (LSTM), Bi-directional LSTM, Convolutional Neural Network (CNN), and a hybrid of CNN and LSTM networks, to automatically classify and identify fake news content related to the COVID-19 pandemic posted on social media platforms. These deep neural networks have been trained and tested using the “COVID-19 Fake News” dataset, which contains 21,379 real and fake news instances for the COVID-19 pandemic and its vaccines. The real news data were collected from independent and internationally reliable institutions on the web, such as the World Health Organization (WHO), the International Committee of the Red Cross (ICRC), the United Nations (UN), the United Nations Children’s Fund (UNICEF), and their official accounts on Twitter. The fake news data were collected from different fact-checking websites (such as Snopes, PolitiFact, and FactCheck). The evaluation results showed that the CNN model outperforms the other deep neural networks with the best accuracy of 94.2%. Full article
(This article belongs to the Section Information Systems and Data Management)
Show Figures

Figure 1

Back to TopTop