Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Andrew E. Stuchbery ORCID = 0000-0002-0198-9901

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
77 pages, 7464 KiB  
Opinion
To Shell Model, or Not to Shell Model, That Is the Question
by Andrew E. Stuchbery and John L. Wood
Physics 2022, 4(3), 697-773; https://doi.org/10.3390/physics4030048 - 29 Jun 2022
Cited by 14 | Viewed by 6534
Abstract
The present review takes steps from the domain of the shell model into open shell nuclei. The question posed in the title is to dramatize how far shell model approaches, i.e., many nucleons occupying independent-particle configurations and interacting through two-body forces (a configuration [...] Read more.
The present review takes steps from the domain of the shell model into open shell nuclei. The question posed in the title is to dramatize how far shell model approaches, i.e., many nucleons occupying independent-particle configurations and interacting through two-body forces (a configuration interaction problem) can provide a description of nuclei as one explores the structure observed where neither proton nor neutron numbers match closed shells. Features of doubly closed and singly closed shell nuclei and adjacent nuclei are sketched, together with the roles played by seniority, shape coexistence, triaxial shapes and particle–core coupling in organizing data. An illuminating step is taken here to provide a detailed study the reduced transition rates, B(E2;21+01+), in the singly closed shell nuclei with doubly closed shell plus or minus a pair of identical nucleons, and the confrontation between such data and state-of-the-art shell model calculations: this amounts to a review of the effective charge problem. The results raise many questions and point to the need for much further work. Some guidance on criteria for sharpening the division between the domain of the shell model and that of deformation-based descriptions of nuclei are provided. The paper is closed with a sketch of a promising direction in terms of the algebraic structure embodied in the symplectic shell model. Full article
Show Figures

Figure 1

Back to TopTop