Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Andrei Derevianko ORCID = 0000-0002-7105-4853

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 588 KiB  
Article
Implications of W-Boson Mass Anomaly for Atomic Parity Violation
by Hoang Bao Tran Tan and Andrei Derevianko
Atoms 2022, 10(4), 149; https://doi.org/10.3390/atoms10040149 - 9 Dec 2022
Cited by 14 | Viewed by 2437
Abstract
We consider the implications of the recent measurement of the W-boson mass MW=80,433.5±9.4MeV/c2 for atomic parity violation experiments. We show that the change in MW shifts the Standard Model prediction for the 133 [...] Read more.
We consider the implications of the recent measurement of the W-boson mass MW=80,433.5±9.4MeV/c2 for atomic parity violation experiments. We show that the change in MW shifts the Standard Model prediction for the 133Cs nuclear weak charge to QW(133Cs)=73.11(1), i.e., by 8.5σ from its current value, and the proton weak charge by 2.7%. The shift in QW(133Cs) ameliorates the tension between existing determinations of its value and motivates more accurate atomic theory calculations, while the shift in QW(p) inspires next-generation atomic parity violation experiments with hydrogen. Using our revised value for QW(133Cs), we also readjust constraints on parameters of physics beyond the Standard Model. Finally, we reexamine the running of the electroweak coupling for the new W boson mass. Full article
Show Figures

Figure 1

12 pages, 517 KiB  
Communication
Precision Measurement Noise Asymmetry and Its Annual Modulation as a Dark Matter Signature
by Benjamin M. Roberts and Andrei Derevianko
Universe 2021, 7(3), 50; https://doi.org/10.3390/universe7030050 - 28 Feb 2021
Cited by 5 | Viewed by 2219
Abstract
Dark matter may be composed of self-interacting ultralight quantum fields that form macroscopic objects. An example of which includes Q-balls, compact non-topological solitons predicted by a range of theories that are viable dark matter candidates. As the Earth moves through the galaxy, interactions [...] Read more.
Dark matter may be composed of self-interacting ultralight quantum fields that form macroscopic objects. An example of which includes Q-balls, compact non-topological solitons predicted by a range of theories that are viable dark matter candidates. As the Earth moves through the galaxy, interactions with such objects may leave transient perturbations in terrestrial experiments. Here we propose a new dark matter signature: an asymmetry (and other non-Gaussianities) that may thereby be induced in the noise distributions of precision quantum sensors, such as atomic clocks, magnetometers, and interferometers. Further, we demonstrate that there would be a sizeable annual modulation in these signatures due to the annual variation of the Earth velocity with respect to dark matter halo. As an illustration of our formalism, we apply our method to 6 years of data from the atomic clocks on board GPS satellites and place constraints on couplings for macroscopic dark matter objects with radii R<104km, the region that is otherwise inaccessible using relatively sparse global networks. Full article
(This article belongs to the Special Issue Advances in Understanding Astrophysical and Atomic Phenomena)
Show Figures

Figure 1

Back to TopTop