Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Amir Sadaula ORCID = 0000-0002-6545-8843

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1917 KiB  
Article
Canine Distemper Virus in Tigers (Panthera tigris) and Leopards (P. pardus) in Nepal
by Jessica Bodgener, Amir Sadaula, Parbat Jung Thapa, Bhijay Kumar Shrestha, Kamal Prasad Gairhe, Suraj Subedi, Kiran Raj Rijal, Purushotam Pandey, Janardan Dev Joshi, Prakriti Kandel, Babu Ram Lamichane, Chiranjibi Prasad Pokheral, Naresh Subedi, Ram Chandra Kandel, Himal Luitel, Navapon Techakriengkrai and Martin Gilbert
Pathogens 2023, 12(2), 203; https://doi.org/10.3390/pathogens12020203 - 28 Jan 2023
Cited by 15 | Viewed by 8380
Abstract
From wild dogs (Lycaon pictus) in the Serengeti to tigers (Panthera tigris altaica) in the Russian Far East, canine distemper virus (CDV) has been repeatedly identified as a threat to wild carnivores. Between 2020 and 2022, six Indian leopards (P. pardus fusca [...] Read more.
From wild dogs (Lycaon pictus) in the Serengeti to tigers (Panthera tigris altaica) in the Russian Far East, canine distemper virus (CDV) has been repeatedly identified as a threat to wild carnivores. Between 2020 and 2022, six Indian leopards (P. pardus fusca) presented to Nepali authorities with fatal neurological disease, consistent with CDV. Here, we report the findings of a serosurvey of wild felids from Nepal. A total of 48 serum samples were tested, comprising 28 Bengal tigers (P. t. tigris) and 20 Indian leopards. Neutralizing antibodies were identified in three tigers and six leopards, equating to seroprevalences of 11% (CI: 2.8–29.3%, n = 28) and 30% (CI: 12.8–54.3%, n = 20), respectively. More than one-third of seropositive animals were symptomatic, and three died within a week of being sampled. The predation of domestic dogs (Canis lupus familiaris) has been posited as a potential route of infection. A comparison of existing diet studies revealed that while leopards in Nepal frequently predate on dogs, tigers do not, potentially supporting this hypothesis. However, further work, including molecular analyses, would be needed to confirm this. Full article
(This article belongs to the Special Issue Canine Distemper Virus Infection)
Show Figures

Figure 1

14 pages, 5831 KiB  
Article
Differentially Represented Proteins in Response to Infection with Mycobacterium tuberculosis Identified by Quantitative Serum Proteomics in Asian Elephants
by Margarita Villar, Rajesh Man Rajbhandari, Sara Artigas-Jerónimo, Marinela Contreras, Amir Sadaula, Dibesh Karmacharya, Paulo Célio Alves, Christian Gortázar and José de la Fuente
Pathogens 2022, 11(9), 1010; https://doi.org/10.3390/pathogens11091010 - 3 Sep 2022
Cited by 1 | Viewed by 3180
Abstract
Tuberculosis is a major global concern. Tuberculosis in wildlife is a risk for zoonotic transmission and becoming one of the challenges for conservation globally. In elephants, the number of cases is likely rising. The aim of this study was to identify proteins related [...] Read more.
Tuberculosis is a major global concern. Tuberculosis in wildlife is a risk for zoonotic transmission and becoming one of the challenges for conservation globally. In elephants, the number of cases is likely rising. The aim of this study was to identify proteins related to tuberculosis infection in elephants, which could then be used for the development of diagnostic tools and/or vaccines. A serum proteomics approach was used to characterize differentially represented proteins in response to Mycobacterium tuberculosis in Asian elephants (Elaphas maximus). Blood samples were collected from eight elephants, four of which were antibody positive for tuberculosis and four were antibody negative. Proteomics analysis identified 26 significantly dysregulated proteins in response to tuberculosis. Of these, 10 (38%) were identified as immunoglobulin and 16 (62%) as non-immunoglobulin proteins. The results provided new information on the antibody response to mycobacterial infection and biomarkers associated with tuberculosis and protective response to mycobacteria in Asian elephants. Protective mechanisms included defense against infection (Alpha-1-B glycoprotein A1BG, Serpin family A member 1 SERPINA1, Transthyretin TTR), neuroprotection (TTR), and reduced risks of inflammation, infections, and cancer (SERPINA1, Keratin 10 KRT10). Using a translational biotechnology approach, the results provided information for the identification of candidate diagnostic, prognostic, and protective antigens for monitoring and control of tuberculosis in Asian elephants. Full article
(This article belongs to the Special Issue Zoonotic Disease Threats and Interventions)
Show Figures

Figure 1

Back to TopTop