Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Ali Sadighi ORCID = 0000-0003-2145-8064

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 241 KiB  
Data Descriptor
Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions
by Reza Taherdangkoo, Miaomiao Tian, Ali Sadighi, Tao Meng, Huichen Yang and Christoph Butscher
Data 2022, 7(10), 140; https://doi.org/10.3390/data7100140 - 16 Oct 2022
Cited by 10 | Viewed by 5993
Abstract
Calcium sulfate exists in three forms, namely dihydrate or gypsum (CaSO4·2H2O), anhydrite (CaSO4), and hemihydrate or bassanite (CaSO4·0.5H2O) depending on temperature, pressure, pH, and formation conditions. The formation of calcium sulfates occurs widely [...] Read more.
Calcium sulfate exists in three forms, namely dihydrate or gypsum (CaSO4·2H2O), anhydrite (CaSO4), and hemihydrate or bassanite (CaSO4·0.5H2O) depending on temperature, pressure, pH, and formation conditions. The formation of calcium sulfates occurs widely in nature and in many engineering settings. Herein, a dataset containing the experimental solubility data of calcium sulfate minerals, i.e., gypsum and anhydrite, in aqueous solutions is presented. The compiled dataset contains calcium sulfates solubility values extracted from 42 papers published between 1906 and 2019. The dataset can be used for various scientific and engineering purposes such as environmental applications (e.g., gas treatment, wastewater treatment, and chemical disposal), geotechnical applications (e.g., clay-sulfate rock swelling), separation processes (e.g., crystallization, extractive distillation, and seawater desalination), and electrochemical processes (e.g., corrosion and electrolysis). Full article
22 pages, 3813 KiB  
Article
Application of Polyacrylic Hydrogel in Durability and Reduction of Environmental Impacts of Concrete through ANN
by Kang Peng, Longliang Wu, Yousef Zandi, Alireza Sadighi Agdas, Ali Majdi, Nebojsa Denic, Aleksandar Zakić, Ahmed Abdel Khalek Ebid, Mohamed Amine Khadimallah and H. Elhosiny Ali
Gels 2022, 8(8), 468; https://doi.org/10.3390/gels8080468 - 26 Jul 2022
Cited by 1 | Viewed by 2671
Abstract
While adding superabsorbent polymer hydrogel particles to fresh concrete admixtures, they act as internal curing agents that absorb and then release large amounts of water and reduce self-desiccation and volumetric shrinkage of cement that finally result in hardened concrete with increased durability and [...] Read more.
While adding superabsorbent polymer hydrogel particles to fresh concrete admixtures, they act as internal curing agents that absorb and then release large amounts of water and reduce self-desiccation and volumetric shrinkage of cement that finally result in hardened concrete with increased durability and strength. The entrainment of microscopic air bubbles in the concrete paste can substantially improve the resistance of concrete. When the volume and distribution of entrained air are adequately managed, the microstructure is protected from the pressure produced by freezing water. This study addresses the design and application of hydrogel nanoparticles as internal curing agents in concrete, as well as new findings on crucial hydrogel–ion interactions. When mixed into concrete, hydrogel particles produce their stored water to power the curing reaction, resulting in less volumetric shrinkage and cracking and thereby prolonging the service life of concrete. The mechanical and swelling performance qualities of the hydrogel are very sensitive to multivalent cations found naturally in concrete mixes, such as aluminum and calcium. The interactions between hydrogel nanoparticles and alkaline cementitious mixes are described in this study, while emphasizing how the chemical structure and shape of the hydrogel particles regulate swelling behavior and internal curing efficiency to eliminate voids in the admixture. Moreover, in this study, an artificial neural network (ANN) was utilized to precisely and quickly analyze the test results of the compressive strength and durability of concrete. The addition of multivalent cations reduced swelling capacity and changed swelling kinetics, resulting in fast deswelling behavior and the creation of a mechanically stiff shell in certain hydrogel compositions. Notably, when hydrogel particles were added to a mixture, they reduced shrinkage while encouraged the creation of particular inorganic phases within the void area formerly held by the swelled particle. Full article
Show Figures

Figure 1

18 pages, 2792 KiB  
Article
Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM
by Qi Liu, Kang Peng, Yousef Zandi, Alireza Sadighi Agdas, Haneen M. Al-Tamimi, Hamid Assilzadeh, Ahmed Abdel Khalek Ebid, Mohamed Amine Khadimallah and H. Elhosiny Ali
Gels 2022, 8(7), 455; https://doi.org/10.3390/gels8070455 - 21 Jul 2022
Cited by 8 | Viewed by 2682
Abstract
The compressive strength, shrinkage, elasticity, and electrical resistivity of the cement-soil pastes (slag, fly ash) of self-healing of cementitious concrete have been studied while adding hydrogels with nano silica (NSi) in this research. Defining the hydraulic and mechanical properties of these materials requires [...] Read more.
The compressive strength, shrinkage, elasticity, and electrical resistivity of the cement-soil pastes (slag, fly ash) of self-healing of cementitious concrete have been studied while adding hydrogels with nano silica (NSi) in this research. Defining the hydraulic and mechanical properties of these materials requires improvement to motivate more uptake for new buildings. Initially, examining the impact of different synthesized hydrogels on cement-soil pastes showed that solid particles in the mixtures highly affected the absorption capacity of NSi, representing the importance of direct interactions between solid particles and hydrogels in a cementitious matrix. All test results were analyzed by use of a hybridized soft computing model such as the adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR) for precise studying and the avoidance of few empirical tests or error percentages. Subsequently, the best RMSE of ANFIS is 0.6568 and the best RMSE of SVM is 1.2564; the RMSE of ANFIS-SVM (0.5643) in the test phase is also close to zero, showing a better performance in hypothesizing self-healing soil-cementitious hydrogel materials in mine backfill. The R2 value for ANFIS-SVM is 0.9547, proving that it is a proper model for predicting the study’s goal. Electrical resistivity and compressive strength declined in the cement-soil pastes including hydrogels according to experimental outcomes; it was lowered by the increase of NSi concentration in the hydrogel. There was a decrement in the autogenous shrinkage of cement-soil pastes while adding hydrogel, depending on the NSi concentration in the hydrogels. The findings of this research are pivotal for the internal curing of cementitious materials to define the absorption of hydrogels. Full article
Show Figures

Figure 1

25 pages, 5428 KiB  
Article
The Numerical Analysis of Replenishment of Hydrogel Void Space Concrete Using Hydrogels Containing Nano-Silica Particles through ELM-ANFIS
by Ji Min, Yousef Zandi, Alireza Sadighi Agdas, Ali Majdi, H. Elhosiny Ali, Amin Jan, Anas A. Salameh and Ahmed Abdel Khalek Ebid
Gels 2022, 8(5), 299; https://doi.org/10.3390/gels8050299 - 13 May 2022
Cited by 8 | Viewed by 3136
Abstract
Currently, Nano-materials are gaining popularity in the building industry due to their high performance in terms of sustainability and smart functionality. In order to reduce cement production and CO2 emissions, nano-silica (NS) has been frequently utilized as a cement alternative and concrete [...] Read more.
Currently, Nano-materials are gaining popularity in the building industry due to their high performance in terms of sustainability and smart functionality. In order to reduce cement production and CO2 emissions, nano-silica (NS) has been frequently utilized as a cement alternative and concrete addition. The influence of Nano-silica-containing hydrogels on the mechanical strength, electrical resistivity, and autogenous shrinkage of cement pastes was investigated. The goal of this study was to identify the main structure–property relationships of water-swollen polymer hydrogel particles used as internal curing agents in cementitious admixtures, as well as to report a unique synthesis process to combine pozzolanic materials with hydrogel particles and determine the replenishment of hydrogel void space. Experiments were designed to measure the absorption capacity and kinetics of hydrogel particles immersed in pure water and cementitious pore solution, as well as to precisely analyze the data derived from the tests using hybridized soft computing models such as Extreme learning machine (ELM) and Adaptive neuro-fuzzy inference system (ANFIS). The models were developed, and the findings were measured using regression indices (RMSE and R2). The findings indicated that combining nano-silica with polymeric hydrogel particles creates a favorable environment for the pozzolanic reaction to occur, and that nano-silica assists in the refilling of hydrogel void space with hydrated cement phases. Full article
Show Figures

Figure 1

Back to TopTop