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Abstract: Currently, Nano-materials are gaining popularity in the building industry due to their high
performance in terms of sustainability and smart functionality. In order to reduce cement production
and CO2 emissions, nano-silica (NS) has been frequently utilized as a cement alternative and concrete
addition. The influence of Nano-silica-containing hydrogels on the mechanical strength, electrical
resistivity, and autogenous shrinkage of cement pastes was investigated. The goal of this study was to
identify the main structure–property relationships of water-swollen polymer hydrogel particles used
as internal curing agents in cementitious admixtures, as well as to report a unique synthesis process to
combine pozzolanic materials with hydrogel particles and determine the replenishment of hydrogel
void space. Experiments were designed to measure the absorption capacity and kinetics of hydrogel
particles immersed in pure water and cementitious pore solution, as well as to precisely analyze
the data derived from the tests using hybridized soft computing models such as Extreme learning
machine (ELM) and Adaptive neuro-fuzzy inference system (ANFIS). The models were developed,
and the findings were measured using regression indices (RMSE and R2). The findings indicated
that combining nano-silica with polymeric hydrogel particles creates a favorable environment for the
pozzolanic reaction to occur, and that nano-silica assists in the refilling of hydrogel void space with
hydrated cement phases.

Keywords: hydrogel; void space; concrete; nano-silica; ELM-ANFIS

1. Introduction

In response to an increasing need for concrete that is more desirable in terms of
durability as well as strength, high-performance concrete (abbreviated as HPC) was created
with a low carbon footprint and a high level of durability and strength while keeping a
low carbon footprint [1–5]. Thus, because of the low water-to-cement ratio (w/c) used in
its construction, HPC is susceptible to shrinkage along with self-desiccation [6–10]. As
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previously mentioned, SAP particles (superabsorbent polymer) are employed to tackle this
problem and have shown promising results as internal curing agents [11] as shown by past
research. SAPs have the ability to absorb a large amount of water during the mixing process
and then expel it as concrete matures, aiding the hydration reaction of concrete [12–18].
SAPs are beneficial for the prevention of self-desiccation [19], the reduction of autogenous
shrinkage, the securing of fractures [20], the refinement of resistance to freeze thaw attacks,
and assistance of microstructure [21] as a result of increased hydration, all of which improve
the durability and strength of concrete [22–27]. However, it should be emphasized that the
installation of SAPs in concrete is fraught with difficulties. First and foremost, to guarantee
that mechanical strength of bulk concrete is not adversely affected by huge gaps formed
due to dehydrated SAPs, size and dosing of hydrogel-based particles must be strictly
regulated. Dehydrated SAPs are a type of additive that is used to increase the mechanical
strength of concrete [28–33]. The chemical structures of SAPs also impact the rheological
qualities of freshly mixed mortar [34], as previously stated. Following that, the time of water
discharge is crucial because in the course of the acceleration stage, desorption of the cement
paste supports the enhancement of hydration and reduction of autogenous shrinkage.
Furthermore, it is vital to realize that SAPs are not inert chemical substances when they
are used [35–38]. Among the SAPs employed in cementitious systems, poly (acrylic acid-
acrylamide) constitutes the vast majority [39,40]. Several studies have established that
multivalent cations produce fast dehydration (or the deswelling) of bulging hydrogel
particles, and in basic pore solutions of newly combined concrete multivalent cations are
plenteous [35,36,41–43]. When exposed to alkaline circumstances, carboxylic acid groups in
acrylic acid (sodium acrylate) polymer networks completely collapse [44–48]. This is due to
the fact that in these networks, the carboxylic acid groups turn anionic and can connect with
free cations [49–53]. As a consequence, SAPs that have acrylic acid are more inclined than
other SAPs in releasing water prematurely within cementitious environments, increasing
effective water content and decreasing mortar compressive strength [54–59]. According to
previous research, the desorption of SAPs that are rich in acrylic acid occurs within minutes
after free swelling trials, limiting the success of the internal cure if it takes place in the midst
of the latent period [60–64]. On account of the acrylic acid’s sensitivity to the concentration
of pore solution in cementitious mixes, this study investigated hydrogel particles that
are acrylamide-based but not significantly ionized in basic surroundings, which should
have more favorable and stable swelling behavior in cementitious mixes [65–68]. Several
studies have shown that acrylamide-rich SAPs have greater immunity to alterations in
pore-solution chemistry [69] and that within the gaps in the cement microstructure formed
following SAP dehydration, inorganic phase formation occurs [70–75]. In the case of
hydrogel particles containing just acrylamide, this “void-filling” effect was shown to be
much more pronounced [76–80]. It was also discovered that increasing the concentration of
acrylamide in the hydrogel helped to increase cement matrix adhesion, which seemed to
accelerate hydrogel particle desorption as a result of capillary effects [81–85].

The durability difficulties associated with autogenous shrinkage cracking in this mate-
rial system as a result of the low w/c ratio utilized for fabrication of high-performance con-
crete [86] are a significant impediment to the widespread application of high-performance
concrete [87–92]. Reduced relative humidity induces capillary forces in the material mi-
crostructure as a consequence of self-desiccation [93–97]. When a material develops cracks,
the pace at which hazardous components are transferred into the substance rises substan-
tially, resulting in physical and chemical deterioration [98–102]. To alleviate autogenous
shrinkage-induced cracking and the related durability problems [103], internal curing
agents such as expanded clay, saturated lightweight aggregates, pumice, and superab-
sorbent hydrogels have been employed in past [104–109]. It has been established that
superabsorbent hydrogels may decrease autogenous shrinkage [11], minimize fracture
formation [110], and enhance freeze–thaw resistance in addition to other properties. Fur-
thermore, earlier research has shown [111] that hydrogels have the potential to self-heal
after being damaged. However, the use of hydrogels in cementitious materials has a draw-



Gels 2022, 8, 299 3 of 25

back in terms of mechanical strength since the hydrogels create considerable voids inside
the material which makes the material less durable.

In order to understand how hydrogels affect the characteristics of cementitious ma-
terials, it is vital to understand the chemical characteristics, physical characteristics, and
combined design of cementitious materials of hydrogels [34]. The most commonly en-
countered hydrogels in cementitious mixes are cross-linked polymers of acrylic acid salts
or copolymers of acrylic acid salts and acrylamide [112–116]. In addition, pH and ionic
strength of solution have an effect on the behavior of polymer networks of the hydrogels
since they are ionizable. It is possible to leverage this characteristic of hydrogels in order
to customize them in accordance with the chemistry of cementitious substances in order
to acquire the expected effect. Nanosilica (NSi), silica fume, metakaolin, and fly ash are
pozzolanic additives that are employed in the creation of high-performance ceramics to
extend the service life and durability of the material [117–122]. Hydrogels have been
examined before in relation to their influence on the activity of cement blends, including
fly ash, silica fume, ground glass, and ground-granulated blast furnace slag [123–127].
When compared with various pozzolans, amorphous NSi has shown stronger pozzolanic
reactivity as a result of its large specific surface area [128–132]. Amorphous silica was found
to be present in large amounts in a prior study on application of cementitious materials
with a mix of internal curing and pozzolanicity. It has also been attempted in the past to
make hydrogels from fly ash and rice husk ash as well as for soil-conditioning uses and
oil recovery. Additionally, NSi has been incorporated into several composite systems for
oil-recovery uses [133].

Amorphous NSi, in particular, due to its high specific surface area, has shown increased
pozzolanic reactivity compared with other pozzolans. Prior studies examined the use of
materials with a combination of pozzolanicity and internal curing in cementitious materials.
In those studies, the internal curing material consisted of a porous material with high
amorphous silica content. Figure 1 shows the synthesis of SIO2 nanoparticles. The use
of hydrogels containing rice husk ash in oil recovery and fly ash in soil-conditioning
applications were also attempted in the past. NSi has also been used in other composite
systems in oil-recovery applications [133–137].
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The microstructure of high-performance concrete (HPC) is highly thick when com-
pared with conventional concrete due to a much lower w/c, implying that the water in
the mix is used throughout the hydration process. The dense microstructure results in a
construction that is both durable and long-lasting while also having a low environmental im-
pact. One of the most challenging technical issues associated with using high-performance
composites (HPC) is autogenous shrinkage, which happens during the curing process
and ultimately results in fracture development, increased porosity, and a loss in overall
strength [138–142]. A lack of water penetration due to the thick microstructure of HPC
means that the standard external curing processes employed in the building industry are
not able to completely avoid autogenous shrinkage [143–146]. Because of this, HPC internal
curing delivers a greater amount of water for processes related to hydration from inside
the concrete [110], resulting in a reduction of shrinkage [147–151]. This is a good process of
internal curing [152] because superabsorbent polymer hydrogel particles are able to collect
and discharge a lot of water, which is necessary to drive hydration processes [103,153–156].
In vitro studies have demonstrated that internal curing using hydrogel particles may de-
crease autogenous shrinkage, fracture creation, improve autogenous sealing capacity [157],
enhance freeze–thaw cycle resistance, and improve longevity. Silica fume (SF), fly ash,
and other similar minerals are pozzolanic substances often used in the production of
high-performance ceramics [158–163].

Due to the arrival of nanotechnology, many types of amorphous nano-silicas with a
large particular surface area are utilized since it has been revealed that in comparison to
traditional SF, they have greater pozzolanic activity [164–168]. A pozzolan with internal
curing, expanded shale, and porous rice husk ash has been employed successfully in studies.
When fine aggregates or cement were not available, porous substances with inherent
pozzolanic characteristics (i.e., a high fraction of amorphous silica phases) were used in
their place. Though polyacrylate-based hydrogels with fly ash are developed to be used
for improved oil recovery and hydrogels with rice-husk ash are used in soil conditioning,
there have been no previous attempts to incorporate nano-silica directly into a hydrogel
particle for use in internally cured cement-based materials. In this research, we describe
a straightforward synthetic approach for combining nano-silica (SiO2) particles with a
polymeric internal curing agent to form a composite material (hydrogel) (Figure 2). In the
case of nano-silica-containing compositions, the dosage was determined to be 8.5 percent
SiO2 by monomer weight. The efficiency of these hydrogel particles was determined by the
use of cement pore solution and gravimetric swelling tests in reverse osmosis (RO) water,
respectively. Additionally, the uses of backscattered electron microscopy to determine the
influence of the hydrogel inclusion on the space structure and the creation of a hydrated
phase in cement pastes after hydrogel particles were integrated. It has been observed
that hydrogel particles that are employed as internal curing agents have an impact on
the cement chemistry, namely: production of calcium–silicate–hydrate (CSH) and calcium
hydroxide (CH) phases [169]. We recently observed that hydrogel particles comprised
mostly of polyacrylamide are capable of producing large quantities of CH phases inside
hydrogel void space [21], which was previously unknown. As a consequence, the mixing
of pozzolanic material into a hydrogel network may result in the creation of an additional
CSH phase, hence improving the mechanical properties and extending the lifespan of
internally cured concrete. According to this research on hydrogel–ion interactions and
how hydrogel chemistry influences cement paste microstructure, it may be possible to
modify the chemical structure of hydrogel particles in order to boost the amount of calcium
hydroxide (CH) phases that develop inside the hydrogel void. According to current
expectations, the combining of nano-silica in water-soluble hydrogel particles would allow
for the development of additional CSH in the empty space by employing a combination of
water-soluble hydrogel particles and pozzolan and inside the hydrogel.
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Figure 2. Applications of hydrogel.

Objectives and Problem Statements

Presently, hydrogels have received a lot of interest as a self-healing and internal
curing agent. Hydrogel’s size distribution and absorption/desorption capabilities are both
versatile, allowing it to be modified to particular mix designs. The first goal of this study
was to see how the chemical structure of hydrogels affects their activity in cementitious
materials and how to fill hydrogel void spaces in cement by the use of Nano-silica particles.
Understanding how hydrogel activity, notably absorption and desorption in cementitious
materials, affects the microstructure and characteristics of cementitious materials requires
an expertise on hydrogel behavior. Further than the well-known chemical interactions
between the pore solution and hydrogels, this study intends to fill a gap of knowledge
in comprehending the variables influencing hydrogel absorption in cement mixes. The
outcomes of the empirical tests are then examined using ELM-ANFIS. Figure 3 shows
the addition of 2.3 mL acetic acid to 2.2 mL Tetraethlorthosilicate (TEOS) and stirring for
10 min and Figure 4 shows the addition of 5 wt% solution of PVP.
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2. Materials and Methods
2.1. Materials

Free radical polymerization was used to create the cross-linked polyacrylamide hydro-
gels that were used in this investigation. Acrylicamide monomers (AM) were combined
into distilled water containing sodium silicate to produce varied compositions of NSi/AM
equal to 0 percent, 10 percent, and 20 percent, respectively. N,N′-methylenebisacrylamide
(MBA) and ammonium persulfate were added to the solution to act as an initiator and a
cross-linking agent, respectively. The solution was poured into the beaker, which was then
placed in an oven at 60 degrees Celsius for three hours until it gelled. It was necessary to
soak the hydrogels in distilled water for one day in order to eliminate the monomers that
did not react with one another before drying at 80 degrees Celsius. The hydrogels were
dried and crushed in a coffee grinder, after which they were sieved to produce a powder
with a particle size range of 75–425 m. The results were published in the journal Biomateri-
als. Scanning electron images of the hydrogel powders taken at different magnifications
are shown in Figure 1.

2.2. Silica Additive Materials Incorporated into Hydrogel

Other additives can be put into hydrogels to improve cementitious healing qualities.
Three distinct materials, Colloidal silica (CNSi), Water Glass (WG) and Nano-silica particles
(NSi), and Water Glass were introduced into hydrogels in this research.

2.3. Nano-Silica Particles (NSi) and Colloidal Silica (CNSi)

Silicon dioxide nanoparticles, sometimes referred to as nano-silica or silica nanopar-
ticles, are a type of nano-reinforcement that can be thought of as a smaller, manufactured
version of silica fume. Nano-silica is available in both solid and colloid forms, although col-
loidal nano-silica is preferable due to collection in the solid form (Figure 5). The inclusion of
nano-silica in the hydrogel was inspired by its favorable effects on the cementitious materials’
microstructure, mechanical characteristics, and hydration. It is one of the most widely used
admixtures in the concrete sector as a result of its small size, void-filling capabilities and
pozzolanic activity. Various amounts of nano-silica, ranging from 1 to 4 percent, have been
used in many investigations and tests. The results reveal an improvement in mechanical
characteristics as well as a reduction in pore volume. Since it has the function of an activator
to boost pozzolanic reaction, a small amount of nano-silica increases compressive strength
dramatically. Although the granularity of nano-silica increases the initial concrete strength,
the final strength of concrete produced using coarse nano-silica was shown to be higher.
For both cases, the optimal Nano-silica dosage was between 1.0 and 1.5 percent. Likewise,
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combining Nano-silica and steel fibers significantly improves flexural strength. The addition
of 1.5 percent nano-silica to HPC improves its flexural strength by roughly 15%.
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ite hydrogels.

A more opaque appearance was seen in hydrogel powders containing NSi compared
with hydrogel powders that did not include NSi, and the opaqueness was enhanced as the
quantity of NSi present in hydrogels increased. This substance is meant to be physically
bonded and maintained inside the polymer networks of hydrogels. In this study, nano-silica
particles were exposed to X-ray diffraction (XRD) using a Siemens D500 diffractometer
(30 mA, 50 kV) with a scanning rate of 0.02◦/s in the (10◦–40◦) range and a scanning rate
of 0.02◦/s (Siemens AG, Berlin and Munich, Germany). Using a top-loaded metal sample
container that was forced against a paper surface, the nanoparticles were softly packed
into the specimen in order to minimize any preferred orientation. It was discovered that
when nano-silica particles are suspended in DI water, their zeta potential can be measured
using a Nanosizer Nano-z instrument (Malvern Instruments, Malvern, United Kingdom).
Two samples were created at different pH values, i.e., 6.3 0.1 and 12.4 0.1, by the gradual
incorporation of a 2 M NaOH solution. The pH values of the samples were measured using
an electronic pH meter. Then, 30 g/mL concentration (1 weight percent) of nanoparticles
was mixed into the solution before testing, and it was allowed to equilibrate at 25 ◦C for
two hours before running the experiment. This phase allowed bigger particle aggregates
to settle out of the solution, leaving behind a suspension of scattered smaller aggregates
and isolated particles (less than a few microns in size) that could be analyzed later on
in the process. There were three measurements taken from each sample, and an average
was calculated.

2.4. Compressive Strength Measurements

Compressive strength tests on cement paste samples aged 3, 7, and 28 days were
carried out using an Insight 820.300-SL machine with a load capacity of 300 kN at a
constant strain rate of 1 mm/min (MTS Systems Corp., Eden Prairie, MN, USA). For every
sample, 3 specimens were analyzed, and mean compressive strength as well as standard
deviation were computed for each specimen. Figure 6 shows hydrogel formed by the
co-assembly of sodium laurate and silica nanoparticles.



Gels 2022, 8, 299 8 of 25
Gels 2022, 8, x FOR PEER REVIEW 8 of 27 
 

 

 

Figure 6. Hydrogel formed by the co-assembly of sodium laurate and silica nanoparticles. 

2.5. Hydrogel Absorption Results 

Swelling capabilities of hydrogel particle samples within the pore solution as well as 

RO water are discussed in detail in this section. The addition of NS to pure (silica-free) 

AM particles resulted in increased absorption in RO water at a maintained crosslink 

density of 2 percent with absorption increasing by 19 percent and 55 percent, respectively, 

at equilibrium (24 h) for NS doses of 1 percent and 10 percent. When SF doses of 1 percent 

and 10 percent were used in conjunction with equilibrium absorption, the results showed 

a little improvement in equilibrium absorption of 2 and 20 percent, respectively. Aside 

from that, lowering crosslink density for pure (silica-free) particles increased swelling 

capacity by 110 percent, and a similar trend was seen for silica-containing particles. For 

example, when NS-10-0.5 was contrasted against NS-10-2, it was shown to have 80 percent 

larger equilibrium swelling capacity than the latter. Since the naturally present pore 

solution ions lowered the osmotic driving force for water absorption, the absorption 

capabilities for every hydrogel sample was lower in the pore solution. It is worth noting 

that no silica particle remains were detected in the beakers following swelling trials, 

showing that the SF and NS particles were physically contained inside the hydrogel 

particles even when the swelling was at its maximum. Figure 7 shows the structure and 

property of polyvinyl alcohol/precipitated silica composite hydrogels for microorganism 

immobilization. 

 

Figure 7. Structure and property of polyvinyl alcohol/precipitated silica composite hydrogels for 

microorganism immobilization. 

2.6. Extreme Learning Machine (ELM) 

Artificial Intelligence (AI), as a novel approach, has been developed widely in 

various fields [170–174] and, compared with other numerical methods [175–179], has 

several advantages such as being more time-saving and accurate [180–184]. The capability 

of AI algorithms in predicting reliable results has been shown in recent years, which has 

led to the development of these types of techniques [185–189]. Extreme learning machine 

(ELM) [190], a recently introduced fast-learning neural algorithm for SLFNs, was newly 

created to enhance the performance of SLFNs [191–195]. In contrast to traditional neural 

network learning algorithms such as BP algorithms that have difficulty manually tuning 

Figure 6. Hydrogel formed by the co-assembly of sodium laurate and silica nanoparticles.

2.5. Hydrogel Absorption Results

Swelling capabilities of hydrogel particle samples within the pore solution as well
as RO water are discussed in detail in this section. The addition of NS to pure (silica-
free) AM particles resulted in increased absorption in RO water at a maintained crosslink
density of 2 percent with absorption increasing by 19 percent and 55 percent, respectively,
at equilibrium (24 h) for NS doses of 1 percent and 10 percent. When SF doses of 1 percent
and 10 percent were used in conjunction with equilibrium absorption, the results showed a
little improvement in equilibrium absorption of 2 and 20 percent, respectively. Aside from
that, lowering crosslink density for pure (silica-free) particles increased swelling capacity
by 110 percent, and a similar trend was seen for silica-containing particles. For example,
when NS-10-0.5 was contrasted against NS-10-2, it was shown to have 80 percent larger
equilibrium swelling capacity than the latter. Since the naturally present pore solution
ions lowered the osmotic driving force for water absorption, the absorption capabilities
for every hydrogel sample was lower in the pore solution. It is worth noting that no silica
particle remains were detected in the beakers following swelling trials, showing that the
SF and NS particles were physically contained inside the hydrogel particles even when
the swelling was at its maximum. Figure 7 shows the structure and property of polyvinyl
alcohol/precipitated silica composite hydrogels for microorganism immobilization.
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2.6. Extreme Learning Machine (ELM)

Artificial Intelligence (AI), as a novel approach, has been developed widely in vari-
ous fields [170–174] and, compared with other numerical methods [175–179], has several
advantages such as being more time-saving and accurate [180–184]. The capability of AI
algorithms in predicting reliable results has been shown in recent years, which has led
to the development of these types of techniques [185–189]. Extreme learning machine
(ELM) [190], a recently introduced fast-learning neural algorithm for SLFNs, was newly
created to enhance the performance of SLFNs [191–195]. In contrast to traditional neural
network learning algorithms such as BP algorithms that have difficulty manually tun-
ing control parameters like learning epochs, learning rate, and so on [196–198], and/or
local minima, ELM is completely automated without the need for repeated tuning and,
theoretically, does not require human participation at any point in the process [199–203].
Furthermore, as compared with other traditional techniques [204–208], the learning pace of
ELM is much faster. Hidden node learning factors such as biases and input weights may be
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randomly given separately in the ELM technique, and the network’s output weights can be
derived systematically by performing a generalized inverse operation on the network’s
weights [209–213]. A fixed nonlinear transformation may be used to efficiently close up
the training phase without the need for a time-consuming learning procedure to be per-
formed [214–217]. A last point to mention is that the ELM approach contains an outstanding
generalization performance. Furthermore, it has been demonstrated that the normal ELM
has universal estimation ability when using RBF activation functions or additive [218]
functions. Several real-world problems, including regression and classification, have been
successfully addressed using ELM [219–221]. The creation of an ELM model includes many
processes including the construction of the SLFN, random selection of the network’s biases
and weights, and the computation of output weights via inversion of the hidden layer
output matrix among others. One SLFN with L hidden nodes is theoretically investigated
for a dataset with m-dimensional target vectors, N training samples, and n-dimensional
input vectors. The dataset is modeled as follows:

L

∑
i=1

βiG
(
wi·xj + bi

)
= oj j = 1, 2, 3, . . . , N (1)

G = activation performance
wi = [wi1, wi2, . . . , win]

T = weight vector connecting ith input neurons to hidden neuron
xj =

[
xj1, xj1, . . . , xjm

]T= input vector
βi = [βi1, βi2, . . . , βim]

T = weight vector connecting output neurons to hidden neurons
bi = [bi1, bi2, . . . , bim]

T = bias vector
oj =

[
oj1, oj1, . . . , ojm

]T= output vector
Assuming that one SLFNN with activation function G and L hidden neurons could give

the targets (tj) with 0 error, e.g.,
L
∑

j=1
‖oj − tj‖ = 0, Equation (1) could be as Equation (2):

L

∑
i=1

βiG
(
wi·xj + bi

)
= tj j = 1, 2, 3, . . . , N (2)

=
[
tj1, tj2, . . . , tjm

]T = target vector
Additionally, this N equation could be compactly communicated as tj

Hβ = T (3)

H =

[
G(w1 + x1 + b1) . . . G(wL·x1 + bL)

... . . .
... G(w1 + xN + b1) . . . G(wL·xN + bL)

]
N×L

(4)

and

β =

[
βT

1
... βT

L

]
L×m

and T =

[
tT
1

... tT
N

]
N×m

(5)

If minimal difference among the right side (target variables) and left side (predicted
variables) of Equation (6) occurs, output weights are acquired, i.e., min ‖Hβ− T‖. It was
also discovered that when the output weight is set to the following, the least error between
the predicted and target variables occurs:

β̂ = H†T (6)

β̂ = Output weight vector

H† = Moor− Penrose generalized inverse matrix

T = Target vector
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Because ELM lacks an optimization approach, human inferences and training time are
considerably reduced (Figure 8).
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2.7. Adaptive Neuro-Fuzzy Inference System (ANFIS)

As previously said, ANFIS is a multilayer feed-forward network consisting of nodes
that are linked by direct connections and every node that acts on its receiving signals in a
predefined way. Direction of signals from one node to another node is described by each
connection in an adaptive network, and as a result, each link has no weight(s). With the
present parameters established in mind, ANFIS generates a fuzzy-inference system (FIS)
(Figure 9) that is based on the input/output nature of data with membership functions
modified using either a gradient decent technique or in conjunction with the least-squares
approach. ANFIS also employs a learning algorithm to precisely discover the ideal settings
for FIS parameters that are comparable to one another. During the training phase, the
parameters are fine-tuned to ensure that the disparity among observed and predicted
values is as little as feasible. An ANFIS layer structure is comprised of five layers, each
of which has its own name. The core of ANFIS is a fuzzy-inference system (FIS). It is the
initial layer that accepts input (crisp) values (x and y) and converts them to fuzzy values
via the application of membership functions (MFs). In the ANFIS knowledge base’s rule
base, there are two fuzzy IF-THEN rules of the sort developed by Sugeno and Takagi:
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Rule 1: if x is A1 and y is B1, then f1 = p1 x + q1 y + r1
Rule 2: if x is A2 and y is B2, then f2 = p2 x + q2 y + r2
Each node of the first layer is selected as an adaptive node with a node function Oi,

Oi
1 = µAi(x) (7)

where:
Ai = a linguistic label
µ = membership function

In FIS development, the bell-shaped membership function is often utilized because of
its enhanced capacity in the regression of nonlinear data. Described below is a bell-shaped
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membership function with a maximal value of 1 and a minimal value of 0. It has the
following characteristics:

µ(x) = bell(x; ai, bi, ci) =
1

1 +
[(

x−ci
ai

)2
]bi

(8)

where:
{ai, bi, ci} = premise parameters
x = input

It is the second layer that amplifies the incoming signals and then transmits the result
to the next tier of the layers. For example:

wi = µAi(x)× µBi(x) i = 1, 2 (9)

Each node’s output reflects the strength with which a rule is being fired.
The rule layer (the third layer) calculates the ratio of the node firing strength of the

rule to the node firing strength of the other nodes using the following formula:

wi
∗ =

wi
w1 + w2

i = 1, 2 (10)

The outputs wi
∗ are denoted as normalized firing strength.

Each node in the defuzzification layer (the fourth layer) performs one of the following
node functions:

Oi
4 = wi

∗ fi = wi
∗(pix + qiy + ri) (11)

where:
wi
∗ = the output of the third layer
{pi, qi, ri} = consequent parameters

After all the incoming signals are added together at the output layer (which is the fifth
layer), the total output is computed:

Oi
5 = f = ∑

i
wi
∗ fi (12)

A threshold value is chosen among the observed and predicted values in this method.
The error value is then determined and reduced by the update of the premise value as well
as resulting parameters. This technique is repeated until the error falls below the threshold,
at which point the initial FIS is trained (Figure 9).

3. Result and Discussion
3.1. Model Performance Indicators

According to the derived data, 70% of it was assigned for the training phase and 30%
was used for the testing phase. The regression indices of root mean square (RMSE), Pearson
correlation coefficient (r), and determination coefficient (R2) were applied via MATLAB.
Figure 10 indicates that the addition of SF also increased the equilibrium absorption by
2% and 20% for SF dosages of 1% and 10%, respectively. Figure 11 shows the decrease of
density by the raise of swelling capacity by 110% for the pure (silica-free) particles and
Figure 12 shows an 80% increase in equilibrium swelling capacity of NS-10-0.5 compared
with NS-10-2.

R2 =

[
∑N

i=1
(
Oi −O

)
·
(

Pi − P
)]2

∑N
i=1
(
Oi −O

)
·∑N

i=1
(

Pi − P
) (13)
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r =
N
(

∑N
i=1 Oi·Pi

)
−
(

∑N
i=1 Oi

)
·
(

∑N
i=1 Pi

)
√
(N ∑N

i=1 O2
i −

(
∑N

i=1 Oi

)2
)·(N ∑N

i=1 P2
i −

(
∑N

i=1 Pi

)2
)

(14)

RMSE =

√√√√ N

∑
i=1

1
N
(Oi − Pi)

2 (15)

Pi = predicted values in sample i
Oi = observed values in sample i
P = predicted values
O = observed values
P = predicted values
O = mean o f observed variables
N = number o f training or testing samples

3.2. Developing of ELM-ANFIS

In the case of the regression analysis on real datasets, the ANFIS-ELM function was
designed and modified accordingly. A total of 80 trials were carried out for each experiment
with the findings being published after an average of 50 trials. There were 50 neurons
found in this research, which was a significant number. According to ELM, the first number
of nodes was determined by a process of hit-or-miss that was dependent on the quantity
of data that was received at the time. Elimination of redundant or inactive hidden nodes
allows ANFIS-ELM to provide more accuracy in terms of performance than before. The
number of neurons was determined by the use of a trial-and-error procedure. Following
that, the RMSE was used to validate the function of ELM throughout the training and
testing phases. For instance, while using the classic ELM, the dataset of delta elevators
with 3000 beginning nodes generated an RMSE of 0.6743; however, when using the ANFIS–
ELM, the dataset of delta elevators with 3000 starting nodes produced an RMSE of 0.5987.
ANFIS-ELM also takes much less time to train than a standard ELM, which saves time
and cost for both phases. In terms of training time, ANFIS-ELM takes 0.1043 s and ELM
takes 0.0231 s when the smallest dataset is used and a training size of 75 is used. For a
conclusion, ANFIS-ELM reduces the likelihood of model overfitting. Figure 12 depicts the
computed moment–rotation curves, which highlight the points at which the state of the
system changes. This illustration demonstrates that the measured settlement is in good
agreement with the forecast technique. Analyses of the data obtained by these procedures
were used to estimate the distribution intervals of the data, which were then normalized in
the range of 0 to 100 before being deformalized. In this particular case, the data distribution
pattern was computed using the ELM-ANFIS software. The model’s histogram and error
distribution are shown in Figure 13. The highest error occurred in the range of 2.5–3 with
25 data, while the least error occurred in the range of 0.5–1 with 2 data. The purpose of this
research is to precisely assess the data produced from the methodologies in order to provide
an analysis of replenishment of hydrogel void space concrete with nano-silica particles. The
regression line and red dots in Figure 14 are the noises in this examination. The intensity
of gray noises along the line indicates that our model is better at prediction. Any overlap
between the line and the red dots indicates how close the predicted and observed values
are aligned. Figure 15 depicts the RMSE test results, with RMSE errors ranging from −40 to
60. Overlaps seen between the predicted (red line) and observed (blue line) values indicate
the proposed model’s accuracy. Figure 16 shows the 3D plot of ANFIS-ELM. There is a close
overlap between two values in this Figure, which represents the model’s outperformance.
Table 1 reveals that the R2 of the test phase in ELM-ANFIS model is 0.8796 which is closer
to 1. In one-layer testing, the RMSE (0.5987) also revealed a better outcome as it was close
to zero. It is possible to acquire highly accurate findings for the prediction of intricate
subsidence patterns induced by mining using the exact analysis given by this hybrid. As a
result, ELM-ANFIS may be able to perform significantly better.
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Figure 11. Decrease of density by raise of swelling capacity by 110% for the pure (silica-free) particles.
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Figure 12. Observed 80% increase in equilibrium swelling capacity of NS-10-0.5 compared with NS-10-2.
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Table 1. Regression results of the models in test phase.

AI Models R2 RMSE r

ANFIS 0.7865 0.8758 1.5643
ELM 0.6754 0.6743 0.7865

ANFIS-ELM 0.8796 0.5987 0.4687

4. Conclusions

When comparing silica-containing polyacrylamide composite hydrogel particles to
silica-free hydrogel particles, the silica-containing polyacrylamide composite hydrogel
particles resulted in a higher level of hydration of internally cured cement paste. Composite
hydrogels with a small crosslink density and a greater silica dosage showed the largest
equilibrium-free swelling capabilities of all the hydrogels tested. The increased swelling
was caused by the silica, which allowed for more water absorption as well as the lower
crosslink density, which allowed the polymer molecules to move more freely. When compar-
ing pastes that contain silica-free hydrogel particles and hydrogel-free pastes, the electrical
resistivity and compressive strength of pastes that comprise of composite hydrogel particles
with higher crosslink density as well as a higher dosage of silica increased significantly
with increasing age that was also compatible with the rise in non-evaporable water content.
At later ages, sizes of hydrogel-related void seemed to be more significant for controlling
the compressive strength in comparison with the local microstructure refinement owing
to void-filling, which was seen earlier. In spite of this, the data indicated that the drop in
strength caused by larger void sizes can be, at the very least, partially offset by an increase
in hydrated product in the voids, which was made possible by the addition of silica in the
hydrogel particles. It should go without saying that the connection between the degree of
void size, hydration, and void-filling activity will have an impact on prolonged strength
and that this is a critical structure–property connection when choosing the SAPs for internal
curing in the first place. Practically, the addition of silica to the hydrogel’s polymer network
allows for the addition of more cementitious elements in a new way that does not have the
same negative effects as nanoparticles.

Author Contributions: Conceptualization, J.M. and Y.Z.; methodology, A.S.A.; software, A.M.;
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