Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Alessio Morace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2112 KiB  
Article
Development of a Time-Gated Epithermal Neutron Spectrometer for Resonance Absorption Measurements Driven by a High-Intensity Laser
by Zechen Lan, Yasunobu Arikawa, Yuki Abe, Seyed Reza Mirfayzi, Alessio Morace, Takehito Hayakawa, Tianyun Wei and Akifumi Yogo
Quantum Beam Sci. 2024, 8(1), 9; https://doi.org/10.3390/qubs8010009 - 29 Feb 2024
Cited by 2 | Viewed by 2225
Abstract
The advance of laser-driven neutron sources (LDNSs) has enabled neutron resonance spectroscopy to be performed with a single shot of a laser. In this study, we describe a detection system of epithermal (∼eV) neutrons especially designed for neutron resonance spectroscopy. A time-gated photomultiplier [...] Read more.
The advance of laser-driven neutron sources (LDNSs) has enabled neutron resonance spectroscopy to be performed with a single shot of a laser. In this study, we describe a detection system of epithermal (∼eV) neutrons especially designed for neutron resonance spectroscopy. A time-gated photomultiplier tube (PMT) with a high cut-off ratio was introduced for epithermal neutron detection in a high-power laser experiment at the Institute of Laser Engineering, Osaka University. We successfully reduced the PMT response to the intense hard X-ray generated as a result of the interaction between laser light and the target material. A time-gated circuit was designed to turn off the response of the PMT during the laser pulse and resume recording the signal when neutrons arrive. The time-gated PMT was coupled with a 6Li glass scintillator, serving as a time-of-flight (TOF) detector to measure the neutron resonance absorption values of 182W and 109Ag in a laser-driven epithermal neutron generation experiment. The neutron resonance peaks at 4.15 eV of 182W and 5.19 eV of 109Ag were detected after a single pulse of laser at a distance of 1.07 m. Full article
(This article belongs to the Section High-Power Laser Physics)
Show Figures

Figure 1

7 pages, 2403 KiB  
Article
In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser
by Daniele Margarone, Julien Bonvalet, Lorenzo Giuffrida, Alessio Morace, Vasiliki Kantarelou, Marco Tosca, Didier Raffestin, Philippe Nicolai, Antonino Picciotto, Yuki Abe, Yasunobu Arikawa, Shinsuke Fujioka, Yuji Fukuda, Yasuhiro Kuramitsu, Hideaki Habara and Dimitri Batani
Appl. Sci. 2022, 12(3), 1444; https://doi.org/10.3390/app12031444 - 28 Jan 2022
Cited by 65 | Viewed by 26524
Abstract
Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 1019 W/cm2) and [...] Read more.
Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 1019 W/cm2) and a 0.2-mm thick boron nitride (BN) target. A high p–B fusion reaction rate and hence, a large α-particle flux was generated and measured, thanks to a proton stream accelerated at the target’s front surface. This was the first proof of principle experiment to demonstrate the efficient generation of α-particles (~1010/sr) through p–B fusion reactions using a PW-class laser in the “in-target” geometry. Full article
(This article belongs to the Special Issue Laser-Driven Accelerators, Radiations, and Their Applications)
Show Figures

Figure 1

Back to TopTop