Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Alastair Robinson ORCID = 0000-0001-8581-2718

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 10155 KiB  
Article
Small Leaves, Big Diversity: Citizen Science and Taxonomic Revision Triples Species Number in the Carnivorous Drosera microphylla Complex (D. Section Ergaleium, Droseraceae)
by Thilo Krueger, Alastair Robinson, Greg Bourke and Andreas Fleischmann
Biology 2023, 12(1), 141; https://doi.org/10.3390/biology12010141 - 16 Jan 2023
Cited by 11 | Viewed by 13290
Abstract
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over [...] Read more.
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over two decades, detailed studies of both Australian and European herbaria and consideration of both crucial contributions by citizen scientists and social media observations, nine species of the D. microphylla complex are here described and illustrated, including four new species: D. atrata, D. hortiorum, D. koikyennuruff, and D. reflexa. The identities of the previously described infraspecific taxa D. calycina var. minor and D. microphylla var. macropetala are clarified. Both are here lectotypified, reinstated, and elevated to species rank. A replacement name, D. rubricalyx, is provided for the former taxon. Key morphological characters distinguishing the species of this complex include the presence or absence of axillary leaves, lamina shape, petal colour, filament shape, and style length. A detailed identification key, comparison figures, and a distribution map are provided. Six of the nine species are recommended for inclusion on the Priority Flora List under the Conservation Codes for Western Australian Flora and Fauna. Full article
(This article belongs to the Special Issue Advances in Plant Taxonomy and Systematics)
Show Figures

Graphical abstract

14 pages, 1503 KiB  
Article
Hyperpolarised 1H–13C Benchtop NMR Spectroscopy
by Alastair D. Robinson, Peter M. Richardson and Meghan E. Halse
Appl. Sci. 2019, 9(6), 1173; https://doi.org/10.3390/app9061173 - 20 Mar 2019
Cited by 17 | Viewed by 5350
Abstract
Benchtop NMR spectrometers with sub-ppm spectral resolution have opened up new opportunities for performing NMR outside of the standard laboratory environment. However, the relatively weak magnetic fields of these devices (1–2 T) results in low sensitivity and significant peak overlap in 1H [...] Read more.
Benchtop NMR spectrometers with sub-ppm spectral resolution have opened up new opportunities for performing NMR outside of the standard laboratory environment. However, the relatively weak magnetic fields of these devices (1–2 T) results in low sensitivity and significant peak overlap in 1H NMR spectra. Here, we use hyperpolarised 13C{1H} NMR to overcome these challenges. Specifically, we demonstrate the use of the signal amplification by reversible exchange (SABRE) parahydrogen-based hyperpolarisation technique to enhance the sensitivity of natural abundance 1D and 2D 13C{1H} benchtop NMR spectra. We compare two detection methods for SABRE-enhanced 13C NMR and observe an optimal 13C{1H} signal-to-noise ratio (SNR) for a refocused INEPT approach, where hyperpolarisation is transferred from 1H to 13C. In addition, we exemplify SABRE-enhanced 2D 13C benchtop NMR through the acquisition of a 2D HETCOR spectrum of 260 mM of 4-methylpyridine at natural isotopic abundance in a total experiment time of 69 min. In theory, signal averaging for over 300 days would be required to achieve a comparable SNR for a thermally polarised benchtop NMR spectrum acquired of a sample of the same concentration at natural abundance. Full article
(This article belongs to the Special Issue Applications of Low Field Magnetic Resonance)
Show Figures

Graphical abstract

Back to TopTop