Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Zein Nanoparticles (ZNPs)
2.3. Synthesis of Wheat Gluten Amyloid Fibrils (WGAFs)
2.4. Fabrication of ZNP-Functionalized WGAF/MC Hybrid Membrane
2.5. Thioflavin T (ThT) Fluorescence Assay
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Thermogravimetric Analysis (TGA)
2.8. Contact Angle Goniometry
2.9. Dynamic Light Scattering (DLS)
2.10. Transmission Electron Microscopy (TEM)
2.11. Scanning Electron Microscopy (SEM)
2.12. Water-in-Oil Emulsion Separation Test
2.13. Statistical Analysis
3. Results and Discussion
3.1. Formation and Characterization of Zein Nanoparticles (ZNPs)
3.2. Synthesis and Characterization of Wheat Gluten Amyloid Fibrils (WGAFs)
3.3. Surface Chemistry and Thermal Properties of ZNP-WGAF/MC Hybrid Membranes
3.4. Surface Microstructure and Surface Wettability of ZNP-WGAF/MC Hybrid Membranes
3.5. Separation Performances of ZNP-WGAF/MC Hybrid Membranes Toward W/O Emulsions
3.6. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Yang, X.; Wang, Y.; Qi, Y.; Zhang, Y.; Luo, J.; Cui, P.; Jiang, W. A review on oil/water emulsion separation membrane material. J. Environ. Chem. Eng. 2022, 10, 107257. [Google Scholar] [CrossRef]
- Wu, J.; Wei, W.; Li, S.; Zhong, Q.; Liu, F.; Zheng, J.; Wang, J. The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. J. Membr. Sci. 2018, 563, 126–133. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. A 2016, 4, 15749–15770. [Google Scholar] [CrossRef]
- Tu, J.-L.; Lai, Y.-R.; Lin, C.-Y.; Wang, S.S.-S.; Lin, T.-H. Applications of three-dimensional whey protein amyloid fibril-based hybrid aerogels in oil/water separation and emulsion separation. Int. J. Biol. Macromol. 2024, 283, 137680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lao, X.; Jiang, X.; Li, Z.; Feng, W.; Chen, L. Sheep bone powder modified PVDF membrane for highlyefficient oil-in-water emulsion separation. J. Taiwan Inst. Chem. Eng. 2024, 165, 105730. [Google Scholar] [CrossRef]
- Li, B.; Qi, B.; Guo, Z.; Wang, D.; Jiao, T. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. Chemosphere 2023, 327, 138528. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagnani, M.; Soon, W.L.; Mezzenga, R. Turning food protein waste into sustainable technologies. Chem. Rev. 2022, 123, 2112–2154. [Google Scholar] [CrossRef]
- Zhou, J.; Li, T.; Peydayesh, M.; Usuelli, M.; Lutz-Bueno, V.; Teng, J.; Wang, L.; Mezzenga, R. Oat plant amyloids for sustainable functional materials. Adv. Sci. 2022, 9, 2104445. [Google Scholar] [CrossRef]
- Rabiee, N.; Sharma, R.; Foorginezhad, S.; Jouyandeh, M.; Asadnia, M.; Rabiee, M.; Akhavan, O.; Lima, E.C.; Formela, K.; Ashrafizadeh, M. Green and sustainable membranes: A review. Environ. Res. 2023, 231, 116133. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, S.; Jin, C.; Ren, F.; Wang, J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int. J. Biol. Macromol. 2023, 253, 126435. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, X.; Liu, H.; Yang, L.; Liu, M.; Yue, Y.; He, B.; Wang, J. Investigation of the Differences in Amyloid-Like Fibrils Derived from Wheat Gluten with Varying Structures under Typical Food Processing Conditions. J. Agric. Food Chem. 2025, 73, 9271–9285. [Google Scholar] [CrossRef] [PubMed]
- Garavand, F.; Khodaei, D.; Mahmud, N.; Islam, J.; Khan, I.; Jafarzadeh, S.; Tahergorabi, R.; Cacciotti, I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 3639–3659. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tang, H.; Liao, R.; Lin, H.; Zhang, W. Gemini surfactant stabilized zein nanoparticles: Preparation, characterization, interaction mechanism, and antibacterial activity. Int. J. Biol. Macromol. 2025, 305, 141264. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Campos, L.A.; Neto, A.F.S.; Noronha, M.C.S.; de Lima, M.F.; Cavalcanti, I.M.F.; Santos-Magalhães, N.S. Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int. J. Pharm. 2023, 635, 122754. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Ku, C.-L.; Lai, Y.-R.; Wang, S.S.-S.; Chou, S.-H.; Lin, T.-H. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int. J. Biol. Macromol. 2023, 249, 126114. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Velazquez-Antillón, M.; Hernández-Téllez, C.N.; Graciano-Verdugo, A.Z.; García-Flores, N.; Iriqui-Razcón, J.L.; Silvas-García, M.I.; Zazueta-Raynaud, A.; Moreno-Vásquez, M.J.; Hernández-Abril, P.A. Antioxidant effect of nanoparticles composed of zein and orange (Citrus sinensis) extract obtained by ultrasound-assisted extraction. Materials 2022, 15, 4838. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Huang, C.-F.; How, S.-C.; Lin, T.-H.; Wang, S.S.-S. Using titanium dioxide nanoparticle-deposited whey protein isolate amyloid fibrils to photocatalyze the degradation of methylene blue. J. Taiwan Inst. Chem. Eng. 2024, 160, 105313. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Wang, T.-H.; How, S.-C.; Lin, K.-S.; Chou, W.-L.; Wang, S.S.-S. Using sugar-derived nanoparticles to mitigate amyloid fibril formation of lysozyme. J. Taiwan Inst. Chem. Eng. 2022, 137, 104360. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Yeap, S.P.; Lim, J.; Ngang, H.P.; Ooi, B.S.; Ahmad, A.L. Role of particle–particle interaction towards effective interpretation of Z-average and particle size distributions from dynamic light scattering (DLS) analysis. J. Nanosci. Nanotechnol. 2018, 18, 6957–6964. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chem. 2023, 100, 23–35. [Google Scholar] [CrossRef]
- Liang, Y.; Song, J.; Wang, J.; Liu, H.; Wu, X.; He, B.; Zhang, X.; Wang, J. Investigating the effects of NaCl on the formation of AFs from gluten in cooked wheat noodles. Int. J. Mol. Sci. 2023, 24, 9907. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-R.; Wang, S.S.-S.; Hsu, T.-L.; Chou, S.-H.; How, S.-C.; Lin, T.-H. Application of amyloid-based hybrid membranes in drug delivery. Polymers 2023, 15, 1444. [Google Scholar] [CrossRef] [PubMed]
- Nazmi, N.; Isa, M.; Sarbon, N. Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Biosci. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Buhus, G.; Popa, M.; Desbrieres, J. Hydrogels based on carboxymethylcellulose and gelatin for inclusion and release of chloramphenicol. J. Bioact. Compat. Polym. 2009, 24, 525–545. [Google Scholar] [CrossRef]
- Azevedo, V.M.; Borges, S.V.; Marconcini, J.M.; Yoshida, M.I.; Neto, A.R.S.; Pereira, T.C.; Pereira, C.F.G. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr. Polym. 2017, 157, 971–980. [Google Scholar] [CrossRef]
- Omrani-Fard, H.; Abbaspour-Fard, M.H.; Khojastehpour, M.; Dashti, A. Gelatin/whey protein-potato flour bioplastics: Fabrication and evaluation. J. Polym. Environ. 2020, 28, 2029–2038. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Hou, X.-X.; How, S.-C.; Lin, T.-H.; Wang, S.S.-S. Development of two-dimensional amyloid fibril/carboxymethyl cellulose hybrid membranes for effective adsorption of hexavalent chromium. J. Environ. Chem. Eng. 2024, 12, 114134. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, X.; He, R.; Ju, X.; Wang, Z. High-flux and durable Janus membrane for oil-in-water emulsions separation via asymmetric acylated zein nanoparticle assembly. Sep. Purif. Technol. 2025, 360, 130986. [Google Scholar] [CrossRef]
- Teng, D.; Zhao, T.; Xu, Y.; Zhang, X.; Zeng, Y. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation. Sep. Purif. Technol. 2021, 263, 118393. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Li, Y.; Yin, Z.; Bao, M. Construction of a superhydrophobic sodium alginate aerogel for efficient oil absorption and emulsion separation. Langmuir 2021, 37, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, J.; Yue, X.; Qiu, F.; Yang, D.; Zhang, T. Study on the application of waste bricks in emulsified oil-water separation. J. Clean. Prod. 2020, 251, 119609. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.; Ismadji, S.; Wenten, I.G. Membrane fouling and fouling mitigation in oil–water separation: A review. J. Environ. Chem. Eng. 2022, 10, 107532. [Google Scholar] [CrossRef]
- Agarwal, S.; von Arnim, V.; Stegmaier, T.; Planck, H.; Agarwal, A. Role of surface wettability and roughness in emulsion separation. Sep. Purif. Technol. 2013, 107, 19–25. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, D.; Jiang, L.; Jin, J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 2014, 6, e101. [Google Scholar] [CrossRef]
- Fang, S.; Wang, Y.; Zhu, L.; Zhang, Y.; Yu, L.L. Effect of zein nanoparticles addition on anthocyanin and lutein dual-loaded nanocomposite hydrogels: Structure, physico-chemical and delivery properties. Int. J. Biol. Macromol. 2025, 309, 142967. [Google Scholar] [CrossRef]
- Hernández-Abril, P.A.; Luque-Alcaraz, A.G.; Iriqui-Razcón, J.L.; Higuera-Valenzuela, H.J.; Hernández-Tellez, C.N. Understanding the Relationship Between Zein Solution Concentration and Nanoparticle Physicochemical Characteristics for Biomedical Use; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Pan, K.; Zhong, Q. Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions. Food Hydrocoll. 2016, 52, 600–606. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Sun, X.; Guo, M. Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils. Int. J. Biol. Macromol. 2021, 167, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Meewan, J.; Somani, S.; Almowalad, J.; Laskar, P.; Mullin, M.; MacKenzie, G.; Khadke, S.; Perrie, Y.; Dufès, C. Preparation of zein-based nanoparticles: Nanoprecipitation versus microfluidic-assisted manufacture, effects of PEGylation on nanoparticle characteristics and cellular uptake by melanoma cells. Int. J. Nanomed. 2022, 17, 2809–2822. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Maldonado-Arriola, J.A.; Hernández-Abril, P.A.; Álvarez-Ramos, M.E.; Hernández-Téllez, C.N. Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization. Nanomaterials 2025, 15, 539. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-H.; Zhang, Y.-Q.; Gao, C.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R. Superhydrophobic aerogel membrane with integrated functions of biopolymers for efficient oil/water separation. Sep. Purif. Technol. 2022, 282, 120138. [Google Scholar] [CrossRef]
- Lei, S.; Zeng, M.; Huang, D.; Wang, L.; Zhang, L.; Xi, B.; Ma, W.; Chen, G.; Cheng, Z. Synergistic high-flux oil–saltwater separation and membrane desalination with carbon quantum dots functionalized membrane. ACS Sustain. Chem. Eng. 2019, 7, 13708–13716. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Cao, Q.; Wang, C.; Yang, C.; Li, Y.; Zhou, J. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton. Sci. Total Environ. 2020, 706, 135807. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, L.; Zhu, X.; Li, H.; Ma, C.; Yu, S.; Sun, D.; Xia, F.; Xue, Q. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep. Purif. Technol. 2021, 259, 118106. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Ge, B.; Men, X.; Xue, Q. A versatile and efficient approach to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions. Sep. Purif. Technol. 2017, 176, 1–7. [Google Scholar] [CrossRef]
- Guo, F.; Wen, Q.; Guo, Z. Low cost and non-fluoride flowerlike superhydrophobic particles fabricated for both emulsions separation and dyes adsorption. J. Colloid Interface Sci. 2017, 507, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Liu, Y.; Wang, B.; Huang, C.; Wang, L.; He, J.; Tian, D.; Shen, F.; Zhang, Y. A universal strategy for efficient separation from single emulsion separation to oil-in-water and water-in-oil mixed emulsions. Sep. Purif. Technol. 2025, 354, 129517. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, K.; Li, J.; Li, Y. Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil–water separation. Chem. Eng. J. 2024, 483, 149338. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, M.; Ma, W.; Huang, C. Multifunctional electrospun nanofibrous membrane: An effective method for water purification. Sep. Purif. Technol. 2023, 327, 124952. [Google Scholar] [CrossRef]
- Langer, R. Invited review polymeric delivery systems for controlled drug release. Chem. Eng. Commun. 1980, 6, 1–48. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Ho, T.-L.; Yang, Y.-H.; Lin, T.-H.; Wang, S.S.-S. Development of sustainable bioplastic films for food packaging using zein protein-derived amyloid fibrils: Characterization and functional properties. Int. J. Biol. Macromol. 2025, 318, 144817. [Google Scholar] [CrossRef] [PubMed]
- Ejeta, D.D.; Wang, C.-F.; Kuo, S.-W.; Chen, J.-K.; Tsai, H.-C.; Hung, W.-S.; Hu, C.-C.; Lai, J.-Y. Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chem. Eng. J. 2020, 402, 126289. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Qian, X.; Wickramasinghe, S.R. Chemical modification of membrane surface—Overview. Curr. Opin. Chem. Eng. 2018, 20, 13–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-R.; Lin, J.-Y.; Hsu, J.-T.; Lin, T.-H.; How, S.-C.; Wang, S.S.-S. Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation. Polymers 2025, 17, 2409. https://doi.org/10.3390/polym17172409
Lai Y-R, Lin J-Y, Hsu J-T, Lin T-H, How S-C, Wang SS-S. Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation. Polymers. 2025; 17(17):2409. https://doi.org/10.3390/polym17172409
Chicago/Turabian StyleLai, You-Ren, Jun-Ying Lin, Jou-Ting Hsu, Ta-Hsien Lin, Su-Chun How, and Steven S.-S. Wang. 2025. "Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation" Polymers 17, no. 17: 2409. https://doi.org/10.3390/polym17172409
APA StyleLai, Y.-R., Lin, J.-Y., Hsu, J.-T., Lin, T.-H., How, S.-C., & Wang, S. S.-S. (2025). Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation. Polymers, 17(17), 2409. https://doi.org/10.3390/polym17172409