Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films
Abstract
1. Introduction
2. Experimental Techniques
2.1. Preparation of Photoselective PMMA Greenhouse Films
2.2. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, I.; Hamid, H. Plastics in agriculture. In Plastics and the Environment; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hammam, M.; El-Mansy, M.; El-Bashir, S.; El-Shaarawy, M. Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 2007, 209, 244–250. [Google Scholar] [CrossRef]
- Giacomelli, G.A.; Roberts, W.J. Greenhouse covering systems. HortTechnology 1993, 3, 50–58. [Google Scholar] [CrossRef]
- El-Bashir, S.; Al-Harbi, F.; Elburaih, H.; Al-Faifi, F.; Yahia, I. Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew. Energy 2016, 85, 928–938. [Google Scholar] [CrossRef]
- El-Bashir, S.; Al-Jaghwani, A. Perylene-doped polycarbonate coatings for acrylic active greenhouse luminescent solar concentrator dryers. Results Phys. 2020, 16, 102920. [Google Scholar] [CrossRef]
- Waaijenberg, D. Design, construction and maintenance of greenhouse structures. In Proceedings of the International Symposium on Greenhouses, Environmental Controls and In-House Mechanization for Crop Production in the Tropics 710, Pahang, Malaysia, 15–17 June 2004; pp. 31–42. [Google Scholar]
- Hiscott, D.; Cvetkovska, M.; Mumin, M.A.; Charpentier, P.A. Light Downshifting ZnO-EVA Nanocomposite Greenhouse Films and Their Influence on Photosynthetic Green Algae Growth. ACS Appl. Polym. Mater. 2021, 3, 3800–3810. [Google Scholar] [CrossRef]
- Sánchez-Lanuza, M.B.; Menéndez-Velázquez, A.; Peñas-Sanjuan, A.; Navas-Martos, F.J.; Lillo-Bravo, I.; Delgado-Sánchez, J.M. Advanced Photonic Thin Films for Solar Irradiation Tuneability Oriented to Greenhouse Applications. Materials 2021, 14, 2357. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bari, A.; Papaioannou, C. Plant responses to UV blocking greenhouse covering materials: A review. Agronomy 2020, 10, 1021. [Google Scholar] [CrossRef]
- Hemming, S.; van Os, E.; Hemming, J.; Dieleman, J. The effect of new developed fluorescent greenhouse films on the growth of Fragaria x ananassa ‘Elsanta’. Eur. J. Hortic. Sci. 2006, 71, 145–154. [Google Scholar]
- Pearson, S.; Wheldon, A.; Hadley, P. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agric. Eng. Res. 1995, 62, 61–69. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. Renew. Sustain. Energy Rev. 2013, 27, 175–190. [Google Scholar] [CrossRef]
- Kumar, M.; Haillot, D.; Gibout, S. Survey and evaluation of solar technologies for agricultural greenhouse application. Sol. Energy 2022, 232, 18–34. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Portnoi, M.; Debije, M.G. The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 2021, 11, 2002883. [Google Scholar] [CrossRef]
- Meinardi, F.; Colombo, A.; Velizhanin, K.A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V.I.; Brovelli, S. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399. [Google Scholar] [CrossRef]
- Weber, W.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299. [Google Scholar] [CrossRef] [PubMed]
- Swartz, B.; Cole, T.; Zewail, A. Photon trapping and energy transfer in multiple-dye plastic matrices: An efficient solar-energy concentrator. Opt. Lett. 1977, 1, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Goetzberger, A.; Wittwer, V. Fluorescent planar collector-concentrators for solar energy conversion. In Festkörperprobleme 19; Springer: Berlin/Heidelberg, Germany, 1979; pp. 427–451. [Google Scholar]
- Batchelder, J.; Zewail, A.; Cole, T. Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 1981, 20, 3733–3754. [Google Scholar] [CrossRef]
- Hermann, A.M. Luminescent solar concentrators—A review. Sol. Energy 1982, 29, 323–329. [Google Scholar] [CrossRef]
- Friedman, P.; Parent, C. Luminescent Solar Concentrator Development; Final Subcontract Report; Solar Energy Research Inst.: Golden, CO, USA, 1987. [Google Scholar]
- Seybold, G.; Wagenblast, G. New perylene and violanthrone dyestuffs for fluorescent collectors. Dye. Pigment. 1989, 11, 303–317. [Google Scholar] [CrossRef]
- Ivri, J.; Burshtein, Z.; Miron, E.; Reisfeld, R.; Eyal, M. The perylene derivative BASF-241 solution as a new tunable dye laser in the visible. IEEE J. Quantum Electron. 1990, 26, 1516–1520. [Google Scholar] [CrossRef]
- Johansson, L.; Langhals, H. Spectroscopic studies of fluorescent perylene dyes. Spectrochim. Acta Part A Mol. Spectrosc. 1991, 7, 857–861. [Google Scholar] [CrossRef][Green Version]
- Griffini, G. Host matrix materials for luminescent solar concentrators: Recent achievements and forthcoming challenges. Front. Mater. 2019, 6, 29. [Google Scholar] [CrossRef]
- El-Bashir, S.; AlSalhi, M.; Al-Faifi, F.; Alenazi, W. Spectral properties of PMMA films doped by perylene dyestuffs for photoselective greenhouse cladding applications. Polymers 2019, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Raeisossadati, M.; Moheimani, N.R.; Parlevliet, D. Red luminescent solar concentrators to enhance Scenedesmus sp. biomass productivity. Algal Res. 2020, 45, 101771. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Moheimani, N.R.; Parlevliet, D. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. Bioresour. Technol. 2019, 291, 121801. [Google Scholar] [CrossRef]
- Cambié, D.; Dobbelaar, J.; Riente, P.; Vanderspikken, J.; Shen, C.; Seeberger, P.H.; Gilmore, K.; Debije, M.G.; Noël, T. Energy—Efficient solar photochemistry with luminescent solar concentrator based photomicroreactors. Angew. Chem. 2019, 131, 14512–14516. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhang, Y. Luminescent solar concentrators performing under different light conditions. Sol. Energy 2019, 188, 1248–1255. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Morandin, L.; Laverty, T.; Kevan, P.; Khosla, S.; Shipp, L. Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses. Can. Entomol. 2001, 133, 883–893. [Google Scholar] [CrossRef]
- Costa, H.S.; Robb, K.L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (Homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 1999, 92, 557–562. [Google Scholar] [CrossRef]
- Díaz, B.M.; Biurrún, R.; Moreno, A.; Nebreda, M.; Fereres, A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 2006, 41, 711–716. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. [Google Scholar] [CrossRef]
- Raviv, M. The use of photoselective cladding materials as modifiers of morphogenesis of plants and pathogens. Int. Symp. Prot. Cultiv. Ornam. Mild Winter Clim. 1988, 246, 275–284. [Google Scholar] [CrossRef]
- Espi, E.; Salmeron, A.; Fontecha, A.; García, Y.A. Real, Plastic films for agricultural applications. J. Plast. Film. Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Garcia-Alonso, Y.; Espi, E.; Salmeron, A.; Fontecha, A.; Gonzalez, A.; Lopez, J. New cool plastic films for greenhouse covering in tropical and subtropical areas. Int. Symp. Greenh. Cool. 2006, 719, 131–138. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- El-Bashir, S.; Alenazi, W.; AlSalhi, M. Optical dispersion parameters and stability of poly (9, 9′-di-n-octylfluorenyl-2.7-diyl)/ZnO nanohybrid films: Towards organic photovoltaic applications. Mater. Res. Express 2017, 4, 025503. [Google Scholar] [CrossRef]
- El-Bashir, S.; Yahia, I.; Binhussain, M.; AlSalhi, M. Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys. 2017, 7, 1238–1244. [Google Scholar] [CrossRef]
- El-Bashir, S.; Yahia, I.; Binhussain, M.; AlSalhi, M. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows. Results Phys. 2017, 7, 1852–1858. [Google Scholar] [CrossRef]
- Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties of amorphous semiconductors. In Amorphous and Liquid Semiconductors; Springer: Berlin/Heidelberg, Germany, 1974; pp. 159–220. [Google Scholar]
- El-Bashir, S. Photophysical properties of fluorescent PMMA/SiO2 nanohybrids for solar energy applications. J. Lumin. 2012, 132, 1786–1791. [Google Scholar] [CrossRef]
Concentration wt% | Tcut-off (%) | ηIR (%) | ||
---|---|---|---|---|
KREMER 94720 | KREMER 94739 | KREMER 94720 | KREMER 94739 | |
10−5 | 98.31 | 96.67 | 68.53 | 61.17 |
10−4 | 94.79 | 92.22 | 70.32 | 64.24 |
10−3 | 64.34 | 71.95 | 72.17 | 67.28 |
10−2 | 4.02 | 11.55 | 75.46 | 70.83 |
10−1 | 0.19 | 0.38 | 77.81 | 72.18 |
Concentration wt% | Eg (eV) | λf (nm) | ||
---|---|---|---|---|
KREMER 94720 | KREMER 94739 | KREMER 94720 | KREMER 94739 | |
10−5 | 5.32 | 5.34 | 583.84 | 569.81 |
10−4 | 5.29 | 5.32 | 604.32 | 574.30 |
10−3 | 5.12 | 5.30 | 649.17 | 577.92 |
10−2 | 5.22 | 5.27 | 607.68 | 628.84 |
10−1 | 5.27 | 5.24 | 613.10 | 644.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwadai, N.; El-Bashir, S. Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers 2022, 14, 531. https://doi.org/10.3390/polym14030531
Alwadai N, El-Bashir S. Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers. 2022; 14(3):531. https://doi.org/10.3390/polym14030531
Chicago/Turabian StyleAlwadai, Norah, and Samah El-Bashir. 2022. "Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films" Polymers 14, no. 3: 531. https://doi.org/10.3390/polym14030531
APA StyleAlwadai, N., & El-Bashir, S. (2022). Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers, 14(3), 531. https://doi.org/10.3390/polym14030531