Pathophysiology of Maternal Obesity and Hypertension in Pregnancy
Abstract
1. Introduction
2. Materials and Methods
3. Relation Between Obesity and Cardiovascular Risk Factors
4. Obesity Management in Women of Reproductive Age
5. Management of Pre-Pregnancy, Pregnancy, and Postpartum Obesity
6. Impact of Obesity on Hypertensive Disorders of Pregnancy
7. The Role of Obesity in Pre-Eclampsia Pathogenesis
8. Relation Between Obesity, Lipid Profile, and Adverse Pregnancy Outcomes
9. Discussion
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
WHO | World Health Organization |
PE | pre-eclampsia |
GH | gestational hypertension |
T2DM | type 2 diabetes mellitus |
CVD | cardiovascular disease |
IR | insulin resistance |
HDP | hypertensive disorders of pregnancy |
sBP | systolic blood pressure |
dBP | diastolic blood pressure |
GWG | gestational weight gain |
MeSH | Medical Subject Heading |
AT | adipose tissue |
WC | waist circumference |
MetS | metabolic syndrome |
TNF-α | tumor necrosis factor α |
NO | nitric oxide |
RAAS | renin–angiotensin–aldosterone system |
SNS | sympathetic nervous system |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein |
DASH | Dietary Approaches to Stop Hypertension |
FDA | US Food and Drug Administration |
EMA | European Medicines Agency |
FIGO | Internal Federation of Gynecology and Obstetrics |
NCD | noncommunicable diseases |
PIGF | placental growth factor |
PIH | pregnancy-induced hypertension |
sFlt-1 | soluble fms-like tyrosine kinase-1 |
VEGF | vascular endothelial growth factor |
IPGs | inositol phosphoglycans |
MDA | malondialdehyde |
ICAM 1 | intercellular adhesion molecule 1 |
VCAM 1 | vascular cell adhesion protein 1 |
References
- Catalano, P.M. Obesity in Pregnancy: ACOG Practice Bulletin, Number 230. Obs. Gynecol. 2021, 137, e128–e144. [Google Scholar] [CrossRef]
- Creanga, A.A.; Catalano, P.M.; Bateman, B.T. Obesity in Pregnancy. N. Engl. J. Med. 2022, 387, 248–259. [Google Scholar] [CrossRef]
- Poniedziałek-Czajkowska, E.; Mierzyński, R.; Leszczyńska-Gorzelak, B. Preeclampsia and Obesity-The Preventive Role of Exercise. Int. J. Environ. Res. Public Health 2023, 20, 1267. [Google Scholar] [CrossRef]
- Guglielmi, V.; Dalle Grave, R.; Leonetti, F.; Solini, A. Female obesity: Clinical and psychological assessment toward the best treatment. Front. Endocrinol. 2024, 15, 1349794. [Google Scholar] [CrossRef]
- Langley-Evans, S.C.; Pearce, J.; Ellis, S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: A narrative review. J. Hum. Nutr. Diet. 2022, 35, 250–264. [Google Scholar] [CrossRef]
- Inzani, I.; Ozanne, S.E. Programming by maternal obesity: A pathway to poor cardiometabolic health in the offspring. Proc. Nutr. Soc. 2022, 81, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.C.R.; Moreira, A.; Moutinho, O. Maternal and long-term offspring outcomes of obesity during pregnancy. Arch. Gynecol. Obs. 2024, 309, 2315–2321. [Google Scholar] [CrossRef]
- Salmón-Gómez, L.; Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Relevance of body composition in phenotyping the obesities. Rev. Endocr. Metab. Disord. 2023, 24, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Preda, A.; Carbone, F.; Tirandi, A.; Montecucco, F.; Liberale, L. Obesity phenotypes and cardiovascular risk: From pathophysiology to clinical management. Rev. Endocr. Metab. Disord. 2023, 24, 901–919. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.H. Hypertensive disorders of pregnancy: Advances in understanding and management. Clin. Hypertens. 2025, 31, e1. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.C.; Powell, T.L.; Jansson, T. Placental function in maternal obesity. Clin. Sci. 2020, 134, 961–984. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M. Obesity and pregnancy—The propagation of a viscous cycle? J. Clin. Endocrinol. Metab. 2003, 88, 3505–3506. [Google Scholar] [CrossRef]
- Wu, P.; Green, M.; Myers, J.E. Hypertensive disorders of pregnancy. BMJ 2023, 381, e071653. [Google Scholar] [CrossRef] [PubMed]
- Cífková, R. Hypertension in Pregnancy: A Diagnostic and Therapeutic Overview. High Blood Press. Cardiovasc. Prev. 2023, 30, 289–303. [Google Scholar] [CrossRef]
- Metoki, H.; Iwama, N.; Hamada, H.; Satoh, M.; Murakami, T.; Ishikuro, M.; Obara, T. Hypertensive disorders of pregnancy: Definition, management, and out-of-office blood pressure measurement. Hypertens. Res. 2022, 45, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Alston, M.C.; Redman, L.M.; Sones, J.L. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients 2022, 14, 2087. [Google Scholar] [CrossRef]
- Sole, K.B.; Staff, A.C.; Laine, K. Maternal diseases and risk of hypertensive disorders of pregnancy across gestational age groups. Pregnancy Hypertens. 2021, 25, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jaramillo, P.; Barajas, J.; Rueda-Quijano, S.M.; Lopez-Lopez, C.; Felix, C. Obesity and Preeclampsia: Common Pathophysiological Mechanisms. Front. Physiol. 2018, 9, 1838. [Google Scholar] [CrossRef]
- Gaillard, R.; Durmuş, B.; Hofman, A.; Mackenbach, J.P.; Steegers, E.A.; Jaddoe, V.W. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity 2013, 21, 1046–1055. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Peaceman, A.M. Gestational weight gain. Am. J. Obs. Gynecol. 2017, 217, 642–651. [Google Scholar] [CrossRef]
- Kivelä, J.; Sormunen-Harju, H.; Girchenko, P.V.; Huvinen, E.; Stach-Lempinen, B.; Kajantie, E.; Villa, P.M.; Reynolds, R.M.; Hämäläinen, E.K.; Lahti-Pulkkinen, M.; et al. Longitudinal Metabolic Profiling of Maternal Obesity, Gestational Diabetes, and Hypertensive Pregnancy Disorders. J. Clin. Endocrinol. Metab. 2021, 106, e4372–e4388. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, G. What is the real cost of our food? Implications for the environment, society and public health nutrition. Public Health Nutr. 2012, 15, 268–276. [Google Scholar] [CrossRef]
- Woodhouse, R. Obesity in art: A brief overview. Front. Horm. Res. 2008, 36, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Desideri, G.; Savoia, C. Update on Obesity and Cardiovascular Risk: From Pathophysiology to Clinical Management. Nutrients 2024, 16, 2781. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, L.P.; Andrade, G.M.; Mayoral, E.P.; Huerta, T.H.; Canseco, S.P.; Rodal Canales, F.J.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Pérez Santiago, A.D.; Alpuche, J.J.; et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res. 2020, 151, 11–21. [Google Scholar] [CrossRef]
- Haidar, A.; Horwich, T. Obesity, Cardiorespiratory Fitness, and Cardiovascular Disease. Curr. Cardiol. Rep. 2023, 25, 1565–1571. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Singh, P.; Covassin, N.; Marlatt, K.; Gadde, K.M.; Heymsfield, S.B. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr. Physiol. 2021, 12, 2949–2993. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef]
- Bays, H. Adiposopathy, “sick fat”, Ockham’s razor, and resolution of the obesity paradox. Curr. Atheroscler. Rep. 2014, 16, 409. [Google Scholar] [CrossRef] [PubMed]
- Artasensi, A.; Mazzolari, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules 2023, 28, 3094. [Google Scholar] [CrossRef]
- Michaelidou, M.; Pappachan, J.M.; Jeeyavudeen, M.S. Management of diabesity: Current concepts. World J. Diabetes 2023, 14, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Vernini, J.M.; Moreli, J.B.; Costa, R.A.; Negrato, C.A.; Rudge, M.V.; Calderon, I.M. Maternal adipokines and insulin as biomarkers of pregnancies complicated by overweight and obesity. Diabetol. Metab. Syndr. 2016, 8, 68. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef]
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef]
- Iwashima, Y.; Katsuya, T.; Ishikawa, K.; Ouchi, N.; Ohishi, M.; Sugimoto, K.; Fu, Y.; Motone, M.; Yamamoto, K.; Matsuo, A.; et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004, 43, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K.; McKenzie, A.L.; Kränkel, N.; Von Schacky, C.; Worm, N.; Nixdorff, U.; Lechner, B.; Scherr, J.; Weingärtner, O.; Krauss, R.M. High-Risk Atherosclerosis and Metabolic Phenotype: The Roles of Ectopic Adiposity, Atherogenic Dyslipidemia, and Inflammation. Metab. Syndr. Relat. Disord. 2020, 18, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Wannamethee, G.; Sarwar, N.; Tchernova, J.; Cherry, L.; Wallace, A.M.; Danesh, J.; Whincup, P.H. Adiponectin and coronary heart disease: A prospective study and meta-analysis. Circulation 2006, 114, 623–629. [Google Scholar] [CrossRef]
- Harnois-Leblanc, S.; Hivert, M.F. Stopping the Intergenerational Risk of Diabetes-From Mechanisms to Interventions: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025, 74, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.H.Y.; Godfrey, K.M. Gestational Diabetes Mellitus and Developmental Programming. Ann. Nutr. Metab. 2020, 76 (Suppl. S3), 4–15. [Google Scholar] [CrossRef] [PubMed]
- Nuako, A.; Tu, L.; Reyes, K.J.C.; Chhabria, S.M.; Stanford, F.C. Pharmacologic Treatment of Obesity in Reproductive Aged Women. Curr. Obs. Gynecol. Rep. 2023, 12, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Ogunwole, S.M.; Zera, C.A.; Stanford, F.C. Obesity Management in Women of Reproductive Age. JAMA 2021, 325, 433–434. [Google Scholar] [CrossRef]
- Cornier, M.A. A review of current guidelines for the treatment of obesity. Am. J. Manag. Care 2022, 28, S288–S296. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocr. Pr. 2016, 22 (Suppl. S3), 1–203. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Elmaleh-Sachs, A.; Schwartz, J.L.; Bramante, C.T.; Nicklas, J.M.; Gudzune, K.A.; Jay, M. Obesity Management in Adults: A Review. JAMA 2023, 330, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
- Wadden, T.A.; Tronieri, J.S.; Butryn, M.L. Lifestyle modification approaches for the treatment of obesity in adults. Am. Psychol. 2020, 75, 235–251. [Google Scholar] [CrossRef]
- Hocking, S.; Sumithran, P. Individualised prescription of medications for treatment of obesity in adults. Rev. Endocr. Metab. Disord. 2023, 24, 951–960. [Google Scholar] [CrossRef]
- Wolfe, B.M.; Kvach, E.; Eckel, R.H. Treatment of Obesity: Weight Loss and Bariatric Surgery. Circ. Res. 2016, 118, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Jäger, P.; Wolicki, A.; Spohnholz, J.; Senkal, M. Review: Sex-Specific Aspects in the Bariatric Treatment of Severely Obese Women. Int. J. Environ. Res. Public Health 2020, 17, 2734. [Google Scholar] [CrossRef]
- Park, K.B.; Jun, K.H. Bariatric surgery for treatment of morbid obesity in adults. Korean J. Intern. Med. 2025, 40, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Hazart, J.; Le Guennec, D.; Accoceberry, M.; Lemery, D.; Mulliez, A.; Farigon, N.; Lahaye, C.; Miolanne-Debouit, M.; Boirie, Y. Maternal Nutritional Deficiencies and Small-for-Gestational-Age Neonates at Birth of Women Who Have Undergone Bariatric Surgery. J. Pregnancy 2017, 2017, 4168541. [Google Scholar] [CrossRef]
- Shahid Tanweer, A.; Shaheen, M.H.; Alshamsi, B.A.; Almazrouei, M.A.; Almasri, R.M.; Shahid Tanveer, A.; Rajeh, J.M. Endocrine Dysfunction Following Bariatric Surgery: A Systematic Review of Postoperative Changes in Major Endocrine Hormones. Cureus 2025, 17, e77756. [Google Scholar] [CrossRef]
- Cipriani, S.; Todisco, T.; Scavello, I.; Di Stasi, V.; Maseroli, E.; Vignozzi, L. Obesity and hormonal contraception: An overview and a clinician’s practical guide. Eat. Weight Disord. 2020, 25, 1129–1140. [Google Scholar] [CrossRef]
- McAuliffe, F.M.; Killeen, S.L.; Jacob, C.M.; Hanson, M.A.; Hadar, E.; McIntyre, H.D.; Kapur, A.; Kihara, A.B.; Ma, R.C.; Divakar, H.; et al. Management of prepregnancy, pregnancy, and postpartum obesity from the FIGO Pregnancy and Non-Communicable Diseases Committee: A FIGO (International Federation of Gynecology and Obstetrics) guideline. Int. J. Gynaecol. Obs. 2020, 151 (Suppl. S1), 16–36. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, E.; Tajvar, M.; Naderimagham, S.; Takian, A. Maternal obesity management: A narrative literature review of health policies. BMC Womens Health 2024, 24, 520. [Google Scholar] [CrossRef]
- Jacob, C.M.; Killeen, S.L.; McAuliffe, F.M.; Stephenson, J.; Hod, M.; Diaz Yamal, I.; Malhotra, J.; Mocanu, E.; McIntyre, H.D.; Kihara, A.B.; et al. Prevention of noncommunicable diseases by interventions in the preconception period: A FIGO position paper for action by healthcare practitioners. Int. J. Gynaecol. Obs. 2020, 151 (Suppl. S1), 6–15. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, C.V.; Shirley, R.; O’Higgins, A.C.; Rosser, M.L.; O’Brien, P.; Hod, M.; O’Reilly, S.L.; Medina, V.P.; Smith, G.N.; Hanson, M.A.; et al. Management of obesity across women’s life course: FIGO Best Practice Advice. Int. J. Gynaecol. Obs. 2023, 160 (Suppl. S1), 35–49. [Google Scholar] [CrossRef]
- Berenson, A.B.; Pohlmeier, A.M.; Laz, T.H.; Rahman, M.; Saade, G. Obesity Risk Knowledge, Weight Misperception, and Diet and Health-Related Attitudes among Women Intending to Become Pregnant. J. Acad. Nutr. Diet. 2016, 116, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Berenson, A.B. Self-perception of weight and its association with weight-related behaviors in young, reproductive-aged women. Obs. Gynecol. 2010, 116, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.Y.; Harrison, C.L.; Boyle, J.A. Preconception Lifestyle and Weight-Related Behaviors by Maternal Body Mass Index: A Cross-Sectional Study of Pregnant Women. Nutrients 2019, 11, 759. [Google Scholar] [CrossRef]
- Maxwell, C.; Gaudet, L.; Cassir, G.; Nowik, C.; McLeod, N.L.; Jacob, C.; Walker, M. Guideline No. 391-Pregnancy and Maternal Obesity Part 1: Pre-conception and Prenatal Care. J. Obs. Gynaecol. Can. 2019, 41, 1623–1640. [Google Scholar] [CrossRef]
- Akhter, Z.; Rankin, J.; Ceulemans, D.; Ngongalah, L.; Ackroyd, R.; Devlieger, R.; Vieira, R.; Heslehurst, N. Pregnancy after bariatric surgery and adverse perinatal outcomes: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002866. [Google Scholar] [CrossRef]
- Shawe, J.; Ceulemans, D.; Akhter, Z.; Neff, K.; Hart, K.; Heslehurst, N.; Štotl, I.; Agrawal, S.; Steegers-Theunissen, R.; Taheri, S.; et al. Pregnancy after bariatric surgery: Consensus recommendations for periconception, antenatal and postnatal care. Obes. Rev. 2019, 20, 1507–1522. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.D.; Hammoud, A.O.; Davidson, L.E.; Laferrère, B.; Fraser, A.; Stanford, J.B.; Hashibe, M.; Greenwood, J.L.; Kim, J.; Taylor, D.; et al. Maternal and neonatal outcomes for pregnancies before and after gastric bypass surgery. Int. J. Obes. 2015, 39, 686–694. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Ribeiro, M.M.; Andrade, A.; Nunes, I. Physical exercise in pregnancy: Benefits, risks and prescription. J. Perinat. Med. 2022, 50, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.K. Nutrition for Pregnant and Lactating Women: The Latest Recommendations From the Dietary Guidelines for Americans 2020-2025 and Practice Implications. Am. J. Lifestyle Med. 2021, 15, 392–396. [Google Scholar] [CrossRef]
- Hanson, M.A.; Bardsley, A.; De-Regil, L.M.; Moore, S.E.; Oken, E.; Poston, L.; Ma, R.C.; McAuliffe, F.M.; Maleta, K.; Purandare, C.N.; et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int. J. Gynaecol. Obs. 2015, 131 (Suppl. S4), S213–S253. [Google Scholar] [CrossRef]
- Vargas-Terrones, M.; Nagpal, T.S.; Barakat, R. Impact of exercise during pregnancy on gestational weight gain and birth weight: An overview. Braz. J. Phys. Ther. 2019, 23, 164–169. [Google Scholar] [CrossRef]
- Catov, J.M.; Parker, C.B.; Gibbs, B.B.; Bann, C.M.; Carper, B.; Silver, R.M.; Simhan, H.N.; Parry, S.; Chung, J.H.; Haas, D.M.; et al. Patterns of leisure-time physical activity across pregnancy and adverse pregnancy outcomes. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 68. [Google Scholar] [CrossRef]
- Cooper, D.B.; Yang, L. Pregnancy And Exercise. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Danielli, M.; Gillies, C.; Thomas, R.C.; Melford, S.E.; Baker, P.N.; Yates, T.; Khunti, K.; Tan, B.K. Effects of Supervised Exercise on the Development of Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 793. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Syngelaki, A.; O’Gorman, N.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound Obs. Gynecol. 2017, 50, 492–495. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obs. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Jones Pullins, M.E.; Boggess, K.A. Aspirin dose for preeclampsia prophylaxis: An argument for 162-mg dosing. Am. J. Obs. Gynecol. MFM 2024, 7, 101564. [Google Scholar] [CrossRef]
- Magee, L.A.; Brown, M.A.; Hall, D.R.; Gupte, S.; Hennessy, A.; Karumanchi, S.A.; Kenny, L.C.; McCarthy, F.; Myers, J.; Poon, L.C.; et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022, 27, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Martins, L.; Gaio, R.; Saraiva, J.; Cerdeira, S.; Matos, L.; Silva, E.; Macedo, F.; Almeida, H. Reference ranges for uterine artery pulsatility index during the menstrual cycle: A cross-sectional study. PLoS ONE 2015, 10, e0119103. [Google Scholar] [CrossRef]
- Guedes-Martins, L.; Gaio, A.R.; Saraiva, J.; Cunha, A.; Macedo, F.; Almeida, H. Uterine artery impedance during the first eight postpartum weeks. Sci. Rep. 2015, 5, 8786. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Martins, L.; Saraiva, J.; Felgueiras, Ó.; Carvalho, M.; Cerdeira, A.; Macedo, F.; Gaio, R.; Almeida, H. Uterine artery impedance during puerperium in normotensive and chronic hypertensive pregnant women. Arch. Gynecol. Obs. 2015, 291, 1237–1246. [Google Scholar] [CrossRef]
- Guedes-Martins, L.; Cunha, A.; Saraiva, J.; Gaio, R.; Macedo, F.; Almeida, H. Internal iliac and uterine arteries Doppler ultrasound in the assessment of normotensive and chronic hypertensive pregnant women. Sci. Rep. 2014, 4, 3785. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Martins, L.; Saraiva, J.; Gaio, R.; Macedo, F.; Almeida, H. Uterine artery impedance at very early clinical pregnancy. Prenat. Diagn. 2014, 34, 719–725. [Google Scholar] [CrossRef]
- Fresch, R.; Stephens, K.; DeFranco, E. The Combined Influence of Maternal Medical Conditions on the Risk of Primary Cesarean Delivery. AJP Rep. 2024, 14, e51–e56. [Google Scholar] [CrossRef] [PubMed]
- Simko, M.; Totka, A.; Vondrova, D.; Samohyl, M.; Jurkovicova, J.; Trnka, M.; Cibulkova, A.; Stofko, J.; Argalasova, L. Maternal Body Mass Index and Gestational Weight Gain and Their Association with Pregnancy Complications and Perinatal Conditions. Int. J. Environ. Res. Public Health 2019, 16, 1751. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, L.; O’Farrell, A.; Moran, P.; Daly, D. Hypertension in pregnancy: Prevalence, risk factors and outcomes for women birthing in Ireland. Pregnancy Hypertens. 2021, 24, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, O.A.; Tanna, R.; Adetokunbo, S.; Omokhodion, O.; Fasokun, M.; Akingbule, A.S.; Martins, C.; Fakorede, M.; Ogundipe, T.; Filani, O. Increasing Pre-pregnancy Body Mass Index and Pregnancy Outcomes in the United States. Cureus 2022, 14, e28695. [Google Scholar] [CrossRef] [PubMed]
- Purohit, A.; Oyeka, C.P.; Khan, S.S.; Toscano, M.; Nayak, S.; Lawson, S.M.; Blumenthal, R.S.; Sharma, G. Preventing Adverse Cardiovascular Outcomes in Pregnancy Complicated by Obesity. Curr. Obs. Gynecol. Rep. 2023, 12, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, D.; Mantzorou, M.; Tyrovolas, S.; Pavlidou, E.; Antasouras, G.; Psara, E.; Poulios, E.; Vasios, G.K.; Giaginis, C. Pre-Pregnancy Excess Weight Association with Maternal Sociodemographic, Anthropometric and Lifestyle Factors and Maternal Perinatal Outcomes. Nutrients 2022, 14, 3810. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.A.; Ashmead, R.; Farmer, A.; Kim, Y.H.; Shellhaas, C.; Oza-Frank, R.; Jackson, R.D.; Costantine, M.M.; Lynch, C.D. Association of Prepregnancy Body Mass Index With Risk of Severe Maternal Morbidity and Mortality Among Medicaid Beneficiaries. JAMA Netw. Open 2022, 5, e2218986. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, C.; Eltit, F.; Santibanez, J.F.; Gatica, S.; Cabello-Verrugio, C.; Simon, F. Endothelial dysfunction in pregnancy metabolic disorders. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165414. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Bone, J.N.; Muraca, G.M.; Razaz, N.; Joseph, K.S.; Lisonkova, S. Prepregnancy body mass index and other risk factors for early-onset and late-onset haemolysis, elevated liver enzymes and low platelets (HELLP) syndrome: A population-based retrospective cohort study in British Columbia, Canada. BMJ Open 2024, 14, e079131. [Google Scholar] [CrossRef]
- Sun, M.; Gao, M.; Luo, M.; Wang, T.; Ruan, X.; Tang, J.; Chen, Q.; Liu, H.; Li, L.; Qin, J. Impact of multiple obesity metrics on hypertensive disorders of pregnancy: A meta-analysis and Mendelian randomisation study. Br. Cardiovasc. Soc. 2024, 110, 1216–1222. [Google Scholar] [CrossRef]
- Amoakoh-Coleman, M.; Ogum-Alangea, D.; Modey-Amoah, E.; Ntumy, M.Y.; Adanu, R.M.; Oppong, S.A. Blood pressure patterns and body mass index status in pregnancy: An assessment among women reporting for antenatal care at the Korle-Bu Teaching hospital, Ghana. PLoS ONE 2017, 12, e0188671. [Google Scholar] [CrossRef]
- Athukorala, C.; Rumbold, A.R.; Willson, K.J.; Crowther, C.A. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010, 10, 56. [Google Scholar] [CrossRef]
- Bautista-Castaño, I.; Henriquez-Sanchez, P.; Alemán-Perez, N.; Garcia-Salvador, J.J.; Gonzalez-Quesada, A.; García-Hernández, J.A.; Serra-Majem, L. Maternal obesity in early pregnancy and risk of adverse outcomes. PLoS ONE 2013, 8, e80410. [Google Scholar] [CrossRef] [PubMed]
- Meazaw, M.W.; Chojenta, C.; Muluneh, M.D.; Loxton, D. Systematic and meta-analysis of factors associated with preeclampsia and eclampsia in sub-Saharan Africa. PLoS ONE 2020, 15, e0237600. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Więckowska, B.; Sajdak, S. Pre-Pregnancy Obesity, Excessive Gestational Weight Gain, and the Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus. J. Clin. Med. 2020, 9, 1980. [Google Scholar] [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef]
- Neal, K.; Ullah, S.; Glastras, S.J. Obesity Class Impacts Adverse Maternal and Neonatal Outcomes Independent of Diabetes. Front. Endocrinol. 2022, 13, 832678. [Google Scholar] [CrossRef]
- Khan, S.S.; Petito, L.C.; Huang, X.; Harrington, K.; McNeil, R.B.; Bello, N.A.; Bairey Merz, C.N.; Miller, E.C.; Ravi, R.; Scifres, C.; et al. Body Mass Index, Adverse Pregnancy Outcomes, and Cardiovascular Disease Risk. Circ. Res. 2023, 133, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Mackeen, A.D.; Boyd, V.E.; Schuster, M.; Young, A.J.; Gray, C.; Angras, K. The impact of prepregnancy body mass index on pregnancy and neonatal outcomes. J. Osteopath. Med. 2024, 124, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Madi, S.R.C.; Garcia, R.M.R.; Souza, V.C.; Rombaldi, R.L.; Araújo, B.F.; Madi, J.M. Effect of Obesity on Gestational and Perinatal Outcomes. Rev. Bras. Ginecol. Obs. 2017, 39, 330–336. [Google Scholar] [CrossRef]
- Mwanamsangu, A.H.; Mahande, M.J.; Mazuguni, F.S.; Bishanga, D.R.; Mazuguni, N.; Msuya, S.E.; Mosha, D. Maternal obesity and intrapartum obstetric complications among pregnant women: Retrospective cohort analysis from medical birth registry in Northern Tanzania. Obes. Sci. Pr. 2020, 6, 171–180. [Google Scholar] [CrossRef]
- Mao, J.; Sun, H.; Shen, Q.; Zou, C.; Yang, Y.; Du, Q. Impact of pre-pregnancy body mass index on preeclampsia. Front. Med. 2025, 12, 1529966. [Google Scholar] [CrossRef]
- Guedes-Martins, L.; Carvalho, M.; Silva, C.; Cunha, A.; Saraiva, J.; Macedo, F.; Almeida, H.; Gaio, A.R. Relationship between body mass index and mean arterial pressure in normotensive and chronic hypertensive pregnant women: A prospective, longitudinal study. BMC Pregnancy Childbirth 2015, 15, 281. [Google Scholar] [CrossRef]
- Savitri, A.I.; Zuithoff, P.; Browne, J.L.; Amelia, D.; Baharuddin, M.; Grobbee, D.E.; Uiterwaal, C.S. Does pre-pregnancy BMI determine blood pressure during pregnancy? A prospective cohort study. BMJ Open 2016, 6, e011626. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A.M.; Landon, M.B.; Lai, Y.; Spong, C.Y.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; et al. Maternal BMI, glucose tolerance, and adverse pregnancy outcomes. Am. J. Obs. Gynecol. 2012, 207, 62.e1. [Google Scholar] [CrossRef]
- Feresu, S.A.; Wang, Y.; Dickinson, S. Relationship between maternal obesity and prenatal, metabolic syndrome, obstetrical and perinatal complications of pregnancy in Indiana, 2008–2010. BMC Pregnancy Childbirth 2015, 15, 266. [Google Scholar] [CrossRef] [PubMed]
- Samuels-Kalow, M.E.; Funai, E.F.; Buhimschi, C.; Norwitz, E.; Perrin, M.; Calderon-Margalit, R.; Deutsch, L.; Paltiel, O.; Friedlander, Y.; Manor, O.; et al. Prepregnancy body mass index, hypertensive disorders of pregnancy, and long-term maternal mortality. Am. J. Obs. Gynecol. 2007, 197, 490.e1–490.e6. [Google Scholar] [CrossRef]
- Lane-Cordova, A.D.; Tedla, Y.G.; Carnethon, M.R.; Montag, S.E.; Dude, A.M.; Rasmussen-Torvik, L.J. Pre-pregnancy blood pressure and body mass index trajectories and incident hypertensive disorders of pregnancy. Pregnancy Hypertens. 2018, 13, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Ramonienė, G.; Maleckienė, L.; Nadišauskienė, R.J.; Bartusevičienė, E.; Railaitė, D.R.; Mačiulevičienė, R.; Maleckas, A. Maternal obesity and obstetric outcomes in a tertiary referral center. Medicina 2017, 53, 109–113. [Google Scholar] [CrossRef]
- Krsman, A.; Stajić, D.; Baturan, B.; Stanković, M.; Kupušinac, A.; Kadić, U.; Pantelić, M.; Gvozdenović, L.; Pop Trajković, S.; Simić, D.; et al. Correlation between increased maternal body mass index and pregnancy complications. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3508–3513. [Google Scholar] [CrossRef]
- O’Brien, T.E.; Ray, J.G.; Chan, W.S. Maternal body mass index and the risk of preeclampsia: A systematic overview. Epidemiology 2003, 14, 368–374. [Google Scholar] [CrossRef]
- Alves, P.; Malheiro, M.F.; Gomes, J.C.; Ferraz, T.; Montenegro, N. Risks of Maternal Obesity in Pregnancy: A Case-control Study in a Portuguese Obstetrical Population. Rev. Bras. Ginecol. Obs. 2019, 41, 682–687. [Google Scholar] [CrossRef]
- Elíasdóttir, Ó.J.; Harðardóttir, H.; Þórkelsson, Þ. The effect of maternal weight on pregnancy outcome. Laeknabladid 2010, 96, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Maducolil, M.K.; Al-Obaidly, S.; Olukade, T.; Salama, H.; AlQubaisi, M.; Al Rifai, H. Maternal characteristics and pregnancy outcomes of women with chronic hypertension: A population-based study. J. Perinat. Med. 2020, 48, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Case, S.; Rijhsinghani, A. Maternal obesity: Perinatal implications. SAGE Open Med. 2023, 11, 20503121231176128. [Google Scholar] [CrossRef]
- Bromfield, S.G.; Ma, Q.; DeVries, A.; Inglis, T.; Gordon, A.S. The association between hypertensive disorders during pregnancy and maternal and neonatal outcomes: A retrospective claims analysis. BMC Pregnancy Childbirth 2023, 23, 514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, M.; Yi, Y.; Xia, L.; Zhang, R.; Li, C.; Liu, P. Influence of maternal body mass index on pregnancy complications and outcomes: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1280692. [Google Scholar] [CrossRef]
- Lewandowska, M.; Więckowska, B.; Sajdak, S.; Lubiński, J. Pre-Pregnancy Obesity vs. Other Risk Factors in Probability Models of Preeclampsia and Gestational Hypertension. Nutrients 2020, 12, 2681. [Google Scholar] [CrossRef]
- Ebrahimi-Mameghani, M.; Mehrabi, E.; Kamalifard, M.; Yavarikia, P. Correlation between Body Mass Index and Central Adiposity with Pregnancy Complications in Pregnant Women. Health Promot. Perspect. 2013, 3, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Heslehurst, N.; Ngongalah, L.; Bigirumurame, T.; Nguyen, G.; Odeniyi, A.; Flynn, A.; Smith, V.; Crowe, L.; Skidmore, B.; Gaudet, L.; et al. Association between maternal adiposity measures and adverse maternal outcomes of pregnancy: Systematic review and meta-analysis. Obes. Rev. 2022, 23, e13449. [Google Scholar] [CrossRef]
- Ursavas, A.; Karadag, M.; Nalci, N.; Ercan, I.; Gozu, R.O. Self-reported snoring, maternal obesity and neck circumference as risk factors for pregnancy-induced hypertension and preeclampsia. Respiration 2008, 76, 33–39. [Google Scholar] [CrossRef]
- Fayed, A.; Wahabi, H.A.; Esmaeil, S.; Elkouny, R.; Elmorshedy, H.; Bakhsh, H. Independent effect of gestational weight gain and prepregnancy obesity on pregnancy outcomes among Saudi women: A sub-cohort analysis from Riyadh mother and baby cohort study (RAHMA). PLoS ONE 2022, 17, e0262437. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, H.J.; Su, T.; Yang, J.; Chen, J.; Peng, Y.; Zhou, S.; Bao, H.; Luo, S.; Wang, H.; et al. The First-Trimester Gestational Weight Gain Associated With de novo Hypertensive Disorders During Pregnancy: Mediated by Mean Arterial Pressure. Front. Nutr. 2022, 9, 862323. [Google Scholar] [CrossRef] [PubMed]
- Macdonald-Wallis, C.; Tilling, K.; Fraser, A.; Nelson, S.M.; Lawlor, D.A. Gestational weight gain as a risk factor for hypertensive disorders of pregnancy. Am. J. Obs. Gynecol. 2013, 209, 327.e1–327.e17. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Filimonovic, D.; Mihajlovic, S.; Milicic, B.; Filipovic, I.; Rovcanin, M.; Dimitrijevic, D.; Nikolic, D. The Influence of Increased Prepregnancy Body Mass Index and Excessive Gestational Weight Gain on Pregnancy Course and Fetal and Maternal Perinatal Outcomes. Healthcare 2020, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Stüber, T.N.; Künzel, E.C.; Zollner, U.; Rehn, M.; Wöckel, A.; Hönig, A. Prevalence and Associated Risk Factors for Obesity During Pregnancy Over Time. Geburtshilfe Frauenheilkd. 2015, 75, 923–928. [Google Scholar] [CrossRef]
- Heude, B.; Thiébaugeorges, O.; Goua, V.; Forhan, A.; Kaminski, M.; Foliguet, B.; Schweitzer, M.; Magnin, G.; Charles, M.A. Pre-pregnancy body mass index and weight gain during pregnancy: Relations with gestational diabetes and hypertension, and birth outcomes. Matern. Child. Health J. 2012, 16, 355–363. [Google Scholar] [CrossRef]
- Ke, J.F.; Liu, S.; Ge, R.L.; Ma, L.; Li, M.F. Associations of maternal pre-pregnancy BMI and gestational weight gain with the risks of adverse pregnancy outcomes in Chinese women with gestational diabetes mellitus. BMC Pregnancy Childbirth 2023, 23, 414. [Google Scholar] [CrossRef]
- Maimaen, S.; Russameecharoen, K.; Boriboonhirunsarn, D. Incidence of excessive gestational weight gain among overweight and obese women. Obs. Gynecol. Sci. 2024, 67, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Chen, H.S.; Hsu, H.C. Maternal Prepregnancy Body Mass Index, Gestational Weight Gain, and Risk of Adverse Perinatal Outcomes in Taiwan: A Population-Based Birth Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1221. [Google Scholar] [CrossRef]
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.J.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 984–995. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Z.; Zheng, W.; Gao, L.; Liang, S.; Cheng, D.; Wang, X.; Guo, C.; Li, G. Patterns of gestational weight gain among women with obesity and its correlation with hypertensive disorders of pregnancy in Chinese women. Matern. Child. Nutr. 2023, 19, e13416. [Google Scholar] [CrossRef]
- Tamás, P.; Kovács, K.; Várnagy, Á.; Farkas, B.; Alemu Wami, G.; Bódis, J. Preeclampsia subtypes: Clinical aspects regarding pathogenesis, signs, and management with special attention to diuretic administration. Eur. J. Obs. Gynecol. Reprod. Biol. 2022, 274, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shen, Z.; Zhan, Y.; Wang, Y.; Ma, S.; Zhang, S.; Liu, J.; Wu, S.; Feng, Y.; Chen, Y.; et al. Effects of pre-pregnancy body mass index and gestational weight gain on maternal and infant complications. BMC Pregnancy Childbirth 2020, 20, 390. [Google Scholar] [CrossRef]
- Valencia-Ortega, J.; Solis-Paredes, J.M.; Saucedo, R.; Estrada-Gutierrez, G.; Camacho-Arroyo, I. Excessive Pregestational Weight and Maternal Obstetric Complications: The Role of Adipokines. Int. J. Mol. Sci. 2023, 24, 14678. [Google Scholar] [CrossRef] [PubMed]
- Ganss, R. Maternal Metabolism and Vascular Adaptation in Pregnancy: The PPAR Link. Trends Endocrinol. Metab. 2017, 28, 73–84. [Google Scholar] [CrossRef]
- Farpour-Lambert, N.J.; Ells, L.J.; Martinez de Tejada, B.; Scott, C. Obesity and Weight Gain in Pregnancy and Postpartum: An Evidence Review of Lifestyle Interventions to Inform Maternal and Child Health Policies. Front. Endocrinol. 2018, 9, 546. [Google Scholar] [CrossRef]
- Magro-Malosso, E.R.; Saccone, G.; Di Tommaso, M.; Roman, A.; Berghella, V. Exercise during pregnancy and risk of gestational hypertensive disorders: A systematic review and meta-analysis. Acta Obs. Gynecol. Scand. 2017, 96, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Rogozinska, E.; Jolly, K.; Glinkowski, S.; Roseboom, T.; Tomlinson, J.W.; Kunz, R.; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: Meta-analysis of randomised evidence. BMJ 2012, 344, e2088. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Zhang, W.; Jiang, H. The effect of exercise on maternal complications and birth outcomes in overweight or obese pregnant women: A meta-analysis. Ann. Palliat. Med. 2020, 9, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Sormunen-Harju, H.; Koivusalo, S.; Gissler, M.; Metsälä, J. The risk of complications in second pregnancy by maternal BMI: The role of first-pregnancy complications, pregestational diabetes and chronic hypertension. Acta Obs. Gynecol. Scand. 2021, 100, 489–496. [Google Scholar] [CrossRef]
- Chobanian, A.V. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National Heart, Lung, and Blood Institute (US): Bethesda, MD, USA, 2004.
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement From the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef]
- Bilano, V.L.; Ota, E.; Ganchimeg, T.; Mori, R.; Souza, J.P. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: A WHO secondary analysis. PLoS ONE 2014, 9, e91198. [Google Scholar] [CrossRef] [PubMed]
- von Dadelszen, P.; Magee, L.A.; Roberts, J.M. Subclassification of preeclampsia. Hypertens. Pregnancy 2003, 22, 143–148. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Romero, R.; Gotsch, F.; Suksai, M.; Gallo, D.M.; Jung, E.; Krieger, A.; Chaemsaithong, P.; Erez, O.; Tarca, A.L. Preeclampsia at term can be classified into 2 clusters with different clinical characteristics and outcomes based on angiogenic biomarkers in maternal blood. Am. J. Obs. Gynecol. 2023, 228, 569.e561–569.e524. [Google Scholar] [CrossRef] [PubMed]
- Robillard, P.Y.; Dekker, G.; Scioscia, M.; Bonsante, F.; Iacobelli, S.; Boukerrou, M.; Hulsey, T.C. Increased BMI has a linear association with late-onset preeclampsia: A population-based study. PLoS ONE 2019, 14, e0223888. [Google Scholar] [CrossRef] [PubMed]
- Bakrania, B.A.; Spradley, F.T.; Drummond, H.A.; LaMarca, B.; Ryan, M.J.; Granger, J.P. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr. Physiol. 2020, 11, 1315–1349. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aranguren, L.C.; Prada, C.E.; Riaño-Medina, C.E.; Lopez, M. Endothelial dysfunction and preeclampsia: Role of oxidative stress. Front. Physiol. 2014, 5, 372. [Google Scholar] [CrossRef]
- Savaj, S.; Vaziri, N. An overview of recent advances in pathogenesis and diagnosis of preeclampsia. Iran. J. Kidney Dis. 2012, 6, 334–338. [Google Scholar]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Increased risk for the development of preeclampsia in obese pregnancies: Weighing in on the mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1326–R1343. [Google Scholar] [CrossRef]
- Waker, C.A.; Hwang, A.E.; Bowman-Gibson, S.; Chandiramani, C.H.; Linkous, B.; Stone, M.L.; Keoni, C.I.; Kaufman, M.R.; Brown, T.L. Mouse models of preeclampsia with preexisting comorbidities. Front. Physiol. 2023, 14, 1137058. [Google Scholar] [CrossRef]
- Sones, J.L.; Yarborough, C.C.; O’Besso, V.; Lemenze, A.; Douglas, N.C. Genotypic analysis of the female BPH/5 mouse, a model of superimposed preeclampsia. PLoS ONE 2021, 16, e0253453. [Google Scholar] [CrossRef]
- Olson, K.N.; Redman, L.M.; Sones, J.L. Obesity “complements” preeclampsia. Physiol. Genom. 2019, 51, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ssengonzi, R.; Townley-Tilson, W.H.D.; Kayashima, Y.; Maeda-Smithies, N.; Li, F. The Roles of Obesity and ASB4 in Preeclampsia Pathogenesis. Int. J. Mol. Sci. 2024, 25, 9017. [Google Scholar] [CrossRef]
- Robillard, P.Y.; Dekker, G.; Scioscia, M.; Saito, S. Progress in the understanding of the pathophysiology of immunologic maladaptation related to early-onset preeclampsia and metabolic syndrome related to late-onset preeclampsia. Am. J. Obs. Gynecol. 2022, 226, S867–S875. [Google Scholar] [CrossRef]
- Myers, J.E. What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further. Placenta 2017, 60, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.N.; Stephens, J.M.; Sones, J.L. Linking inflammatory adipose tissue to placental abnormalities in obese preeclamptic pregnancies. Physiol. Genom. 2022, 54, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Palei, A.C.; Tan, A.Y.; Joo, W.S.; Kussie, P.; Anderson, C.D.; Wilson, B.A.; Spradley, F.T. Administration of recombinant human placental growth factor decreases blood pressure in obese hypertensive pregnant rats. J. Hypertens. 2020, 38, 2295–2304. [Google Scholar] [CrossRef]
- Gilbert, J.S.; Verzwyvelt, J.; Colson, D.; Arany, M.; Karumanchi, S.A.; Granger, J.P. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 2010, 55, 380–385. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Hunt, H.; Melhorn, S.; Gammill, H.S.; Schur, E.A. Adipokine profiles in preeclampsia. J. Matern. Fetal Neonatal Med. 2020, 33, 2812–2817. [Google Scholar] [CrossRef]
- Spradley, F.T. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R5–R12. [Google Scholar] [CrossRef]
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef]
- Ibrahim, H.S.; Omar, E.; Froemming, G.R.; Singh, H.J. Leptin increases blood pressure and markers of endothelial activation during pregnancy in rats. Biomed. Res. Int. 2013, 2013, 298401. [Google Scholar] [CrossRef] [PubMed]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Obese melanocortin-4 receptor-deficient rats exhibit augmented angiogenic balance and vasorelaxation during pregnancy. Physiol. Rep. 2013, 1, e00081. [Google Scholar] [CrossRef]
- Kayashima, Y.; Townley-Tilson, W.H.D.; Vora, N.L.; Boggess, K.; Homeister, J.W.; Maeda-Smithies, N.; Li, F. Insulin Elevates ID2 Expression in Trophoblasts and Aggravates Preeclampsia in Obese ASB4-Null Mice. Int. J. Mol. Sci. 2023, 24, 2149. [Google Scholar] [CrossRef] [PubMed]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015, 5, 3142–3176. [Google Scholar] [CrossRef] [PubMed]
- Sureshchandra, S.; Marshall, N.E.; Wilson, R.M.; Barr, T.; Rais, M.; Purnell, J.Q.; Thornburg, K.L.; Messaoudi, I. Inflammatory Determinants of Pregravid Obesity in Placenta and Peripheral Blood. Front. Physiol. 2018, 9, 1089. [Google Scholar] [CrossRef]
- Shukla, J.; Walsh, S.W. Neutrophil release of myeloperoxidase in systemic vasculature of obese women may put them at risk for preeclampsia. Reprod. Sci. 2015, 22, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Denison, F.C.; Roberts, K.A.; Barr, S.M.; Norman, J.E. Obesity, pregnancy, inflammation, and vascular function. Reproduction 2010, 140, 373–385. [Google Scholar] [CrossRef]
- Jeyabalan, A. Epidemiology of preeclampsia: Impact of obesity. Nutr. Rev. 2013, 71 (Suppl. S1), S18–S25. [Google Scholar] [CrossRef]
- Mogilenko, D.A.; Kudriavtsev, I.V.; Trulioff, A.S.; Shavva, V.S.; Dizhe, E.B.; Missyul, B.V.; Zhakhov, A.V.; Ischenko, A.M.; Perevozchikov, A.P.; Orlov, S.V. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 2012, 287, 5954–5968. [Google Scholar] [CrossRef]
- Beckers, K.F.; Sones, J.L. Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1–H10. [Google Scholar] [CrossRef]
- Dey, M.; Arora, D.; Narayan, N.; Kumar, R. Serum Cholesterol and Ceruloplasmin Levels in Second Trimester can Predict Development of Pre-eclampsia. N. Am. J. Med. Sci. 2013, 5, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hubel, C.A.; McLaughlin, M.K.; Evans, R.W.; Hauth, B.A.; Sims, C.J.; Roberts, J.M. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am. J. Obs. Gynecol. 1996, 174, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Cantin, C.; Arenas, G.; San Martin, S.; Leiva, A. Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta 2021, 106, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.T.; Scharnagl, H.; Wadsack, C.; Marsche, G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring. Antioxidants 2023, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Poornima, I.G.; Indaram, M.; Ross, J.D.; Agarwala, A.; Wild, R.A. Hyperlipidemia and risk for preclampsia. J. Clin. Lipidol. 2022, 16, 253–260. [Google Scholar] [CrossRef]
- Formisano, E.; Proietti, E.; Perrone, G.; Demarco, V.; Galoppi, P.; Stefanutti, C.; Pisciotta, L. Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review. Nutrients 2024, 16, 2927. [Google Scholar] [CrossRef]
- Guedes-Martins, L. Superimposed Preeclampsia. Adv. Exp. Med. Biol. 2017, 956, 409–417. [Google Scholar] [CrossRef]
- Guedes-Martins, L.; Silva, E.; Gaio, A.R.; Saraiva, J.; Soares, A.I.; Afonso, J.; Macedo, F.; Almeida, H. Fetal-maternal interface impedance parallels local NADPH oxidase related superoxide production. Redox Biol. 2015, 5, 114–123. [Google Scholar] [CrossRef]
- Pinheiro, A.R.; Rodrigues, A.R.; Matos, L.; Costa, J.J.; Ricardo, S.; Martins, L.G.; Almeida, H.; Silva, E. Antioxidant treatment attenuates age-related placenta GLUT-1 and PLIN-2 downregulation. Placenta 2024, 160, 60–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, J.; Guedes-Martins, L. Pathophysiology of Maternal Obesity and Hypertension in Pregnancy. J. Cardiovasc. Dev. Dis. 2025, 12, 91. https://doi.org/10.3390/jcdd12030091
Lourenço J, Guedes-Martins L. Pathophysiology of Maternal Obesity and Hypertension in Pregnancy. Journal of Cardiovascular Development and Disease. 2025; 12(3):91. https://doi.org/10.3390/jcdd12030091
Chicago/Turabian StyleLourenço, Joana, and Luís Guedes-Martins. 2025. "Pathophysiology of Maternal Obesity and Hypertension in Pregnancy" Journal of Cardiovascular Development and Disease 12, no. 3: 91. https://doi.org/10.3390/jcdd12030091
APA StyleLourenço, J., & Guedes-Martins, L. (2025). Pathophysiology of Maternal Obesity and Hypertension in Pregnancy. Journal of Cardiovascular Development and Disease, 12(3), 91. https://doi.org/10.3390/jcdd12030091