Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Preprocessing
2.4. Statistical Analysis
- (1)
- Establish ARIMA model for mumps: Use the monthly reported cases of mumps in Chongqing from January 2009 to December 2018 to establish an ARIMA model. Firstly, the ADF test is used to examine whether the sequence is stationary (p < 0.05 indicates non-stationary), and the Box–Ljung test is to determine whether the sequence is a white noise sequence (p < 0.05 indicates that the sequence is non-white noise). Secondly, the model orders are measured according to the auto–correlation function plot (ACF) and partial auto–correlation function plot (PACF). Additionally, the least–squares method (LSM) and the Student’s t−test are used for parameter estimation and testing (p < 0.05 indicates statistically significant parameters), and the Box–Ljung test is conducted for model diagnosis (p ≥ 0.05 sufficiently indicates the model extract information). Finally, the Akaike information criterion (AIC) is used to select the optimal model among all ARIMA(p,d,q)(P,D,Q)[n] models that passed the tests (the smaller the AIC, the better the model fitting).
- (2)
- Select exogenous variables: Use the cross–correlation function (CCF) plot to assess the relationship between mumps and meteorological factors, and to determine which factor and its lag order are suitable for the ARIMAX model. In the CCF plot, the horizontal axis is the lag order, the vertical axis is the correlation coefficient and the dashed line is the reference line 2 times the standard deviation. If the coefficient at some lag order exceeds 2 standard deviations, it can be considered that the meteorological factor at that lag order is correlated to mumps.
- (3)
- Model selection: The exogenous variables obtained in the previous step are incorporated into the ARIMA model to fit the ARIMAX model, with the parameter test and model diagnosis is performed. The best ARIMAX model is selected by AIC from models that have passed parametric tests and model diagnoses.
- (4)
- Model prediction: The ARIMA and ARIMAX models are used to predict the monthly case number of mumps in Chongqing in 2019, and compared with the actual cases, respectively. The mean absolute error (MAE) and the root–mean–square error (RMSE) are used to evaluate the prediction error, and the smaller the MAE and RMSE, the smaller the prediction error. The formulas are as follows:
3. Results
3.1. Descriptive Analysis
3.2. Difference Analysis
3.3. Model Construct
3.3.1. ARIMA Model
3.3.2. ARIMAX Model
3.3.3. Model Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, L.; Örvell, C.; Myers, R.; Rota, P.A.; Nakayama, T.; Forcic, D.; Hiebert, J.; Brown, K.E. Genomic diversity of mumps virus and global distribution of the 12 genotypes. Rev. Med. Virol. 2014, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Hviid, A.; Rubin, S.; Mühlemann, K. Mumps. Lancet 2008, 371, 932–944. [Google Scholar] [CrossRef]
- Jiang, R.; Yin, Q.; Xu, M.; Zhao, Z.; Deng, Y.; Che, Y. Analysis of the incidence characteristics of mumps and key prevention and control populations in China from 2004 to 2018. Chin. J. Contemp. Pediatrics 2019, 21, 441–444. [Google Scholar]
- Bezirtzoglou, C.; Dekas, K.; Charvalos, E. Climate changes, environment and infection: Facts, scenarios and growing awareness from the public health community within Europe. Anaerobe 2011, 17, 337–340. [Google Scholar] [CrossRef]
- McMichael, A.J. Extreme weather events and infectious disease outbreaks. Virulence 2015, 6, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Guo, Y.; Rutherford, S.; Qi, C.; Wang, X.; Wang, P.; Zheng, Z.; Xu, Q.; Li, X. The relationship between meteorological factors and mumps based on Boosted regression tree model. Sci. Total Environ. 2019, 695, 133758. [Google Scholar] [CrossRef]
- Hu, W.; Li, Y.; Han, W.; Xue, L.; Zhang, W.; Ma, W.; Bi, P. Meteorological factors and the incidence of mumps in Fujian Province, China, 2005–2013: Non-linear effects. Sci. Total Environ. 2017, 619–620, 1286–1298. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, R.-R.; Han, L.; Wang, H.; Zhang, X.; Tang, Q.-L.; Yan, L.; He, J. Time series analysis of mumps and meteorological factors in Beijing, China. BMC Infect. Dis. 2019, 19, 435. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Su, B.-H.; Su, H.-J.; Chang, H.-L.; Lin, C.-Y.; Chen, H.; Chen, K.-T. The association between the incidence of mumps and meteorological parameters in Taiwan. Hum. Vaccines Immunother. 2015, 11, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yang, Z.; Ding, H.; Zhang, X.; Dong, Z.; Hu, W.; Liu, X.; Wang, M.; Hu, G.; Fu, C. The relationship between meteorological factors and mumps incidence in Guangzhou, China, 2005–2012. Hum. Vaccines Immunother. 2014, 10, 2421–2432. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wen, T.; Xing, D.; Zhang, Y. Associations between floods and bacillary dysentery cases in main urban areas of Chongqing, China, 2005–2016: A retrospective study. Environ. Health Prev. Med. 2021, 26, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lan, L.; Wang, Y.; Yang, C.; Tang, W.; Cui, G.; Luo, S.; Cheng, Y.; Liu, Y.; Liu, J.; et al. Extremely cold and hot temperatures increase the risk of diabetes mortality in metropolitan areas of two Chinese cities. Environ. Res. 2014, 134, 91–97. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Luo, S.; He, J.; Cheng, Y.; Jin, Y. Impacts of extremely high temperature and heatwave on heatstroke in Chongqing, China. Environ. Sci. Pollut. Res. 2017, 24, 8534–8540. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, R.; Liu, Y.; Luo, C.; Xu, A.; Xue, F.; Xu, Q.; Li, X. Forecasting the Incidence of Mumps in Zibo City Based on a SARIMA Model. Int. J. Environ. Res. Public Health 2017, 14, 925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Zhao, H.; Xiang, H.; Ou, R.; Yi, J.; Hu, L.; Zhu, H.; Ye, M. Forecasting the incidence of mumps in Chongqing based on a SARIMA model. BMC Public Health 2021, 21, 373. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Zhong, W.; Zhang, C.; Xin, B. A truncated SVD-based ARIMA model for multiple QoS prediction in mobile edge computing. Tsinghua Sci. Technol. 2022, 27, 315–324. [Google Scholar] [CrossRef]
- Alabdulrazzaq, H.; Alenezi, M.N.; Rawajfih, Y.; Alghannam, B.A.; Al-Hassan, A.A.; Al-Anzi, F.S. On the accuracy of ARIMA based prediction of COVID-19 spread. Results Phys. 2021, 27, 104509. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environ. Sci. Pollut. Res. 2021, 29, 4128–4144. [Google Scholar] [CrossRef]
- Hossain, S.; Ahmed, S.; Uddin, J. Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model. Sci. Total Environ. 2020, 761, 143315. [Google Scholar] [CrossRef]
- Jing, Q.L.; Cheng, Q.; Marshall, J.M.; Hu, W.B.; Yang, Z.C.; Lu, J.H. Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: Evidence from ARIMAX model. Epidemiol. Infect. 2018, 146, 1226–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Liu, W.; Ai, J.; He, M.; Wu, Y.; Shi, Y.; Shen, W.; Bao, C. Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China. BMC Infect. Dis. 2020, 20, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Beard, E.; Marsden, J.; Brown, J.; Tombor, I.; Stapleton, J.; Michie, S.; West, R. Understanding and using time series analyses in addiction research. Addiction 2019, 114, 1866–1884. [Google Scholar] [CrossRef] [PubMed]
- Chadsuthi, S.; Iamsirithaworn, S.; Triampo, W.; Modchang, C. Modeling Seasonal Influenza Transmission and Its Association with Climate Factors in Thailand Using Time-Series and ARIMAX Analyses. Comput. Math. Methods Med. 2015, 2015, 436495. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Time Series Analysis with R, 2nd ed.; China Renmin University Press: Beijing, China, 2020; pp. 217–224. [Google Scholar]
- Fisman, D. Seasonality of viral infections: Mechanisms and unknowns. Clin. Microbiol. Infect. 2012, 18, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6, S737–S746. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Su, S.-B.; Peng, C.-J.; Chen, K.-T. The incidence of mumps in Taiwan and its association with the meteorological parameters: An observational study. Medicine 2021, 100, e27267. [Google Scholar] [CrossRef]
- Lin, S.; Ruan, S.; Geng, X.; Song, K.; Cui, L.; Liu, X.; Zhang, Y.; Cao, M.; Zhang, Y. Non-linear relationships and interactions of meteorological factors on mumps in Jinan, China. Int. J. Biometeorol. 2020, 65, 555–563. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, D.; Hu, Y.; Li, C.; Jia, Y.; She, K.; Liu, T.; Xu, Q.; Zhang, Y.; Li, X. Exploring the Relationship between Mumps and Meteorological Factors in Shandong Province, China Based on a Two-Stage Model. Int. J. Environ. Res. Public Health 2021, 18, 10359. [Google Scholar] [CrossRef]
- Bélanger, M.; Gray-Donald, K.; O’Loughlin, J.; Paradis, G.; Hanley, J. Influence of Weather Conditions and Season on Physical Activity in Adolescents. Ann. Epidemiol. 2009, 19, 180–186. [Google Scholar] [CrossRef]
- Li, R.; Lin, H.; Liang, Y.; Zhang, T.; Luo, C.; Jiang, Z.; Xu, Q.; Xue, F.; Liu, Y.; Li, X. The short-term association between meteorological factors and mumps in Jining, China. Sci. Total Environ. 2016, 568, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Zha, W.-T.; Li, W.-T.; Zhou, N.; Zhu, J.-J.; Feng, R.; Li, T.; Du, Y.-B.; Liu, Y.; Hong, X.-Q.; Lv, Y. Effects of meteorological factors on the incidence of mumps and models for prediction, China. BMC Infect. Dis. 2020, 20, 468. [Google Scholar] [CrossRef] [PubMed]
Factor | Cluster | Mean | Std | T–Value | p–Value |
---|---|---|---|---|---|
Mumps | A (N = 31) | 1793.70 | 900.40 | 9.91 | <0.01 * |
B (N = 101) | 708.00 | 356.30 | |||
P | A | 161.60 | 78.68 | 5.18 | <0.01 * |
B | 81.82 | 73.84 | |||
T | A | 22.50 | 4.80 | 4.43 | <0.01 * |
B | 17.44 | 7.53 | |||
S | A | 108.20 | 54.32 | 2.29 | 0.02 * |
B | 78.93 | 64.60 | |||
H | A | 76.70 | 5.27 | −0.05 | 0.96 |
B | 76.77 | 7.51 | |||
W | A | 1.51 | 0.24 | 2.06 | 0.04 * |
B | 1.41 | 0.21 | |||
Pr | A | 970.60 | 6.59 | −5.29 | <0.01 * |
B | 979.70 | 8.84 | |||
R | A | 15.97 | 4.13 | 4.42 | <0.01 * |
B | 12.16 | 4.23 |
ADF Test | Box–Ljung Test | ||||
---|---|---|---|---|---|
Type | Lag | p | χ-Squared | Df | p |
No drift no trend | 0 | <0.01 | 23.62 | 6 | <0.01 |
1 | <0.01 | ||||
2 | <0.01 | ||||
With drift no trend | 0 | <0.01 | 56.96 | 12 | <0.01 |
1 | <0.01 | ||||
2 | <0.01 | ||||
With drift and trend | 0 | <0.01 | 65.14 | 18 | <0.01 |
1 | <0.01 | ||||
2 | <0.01 |
Model | AIC | Box–Ljung Test p |
---|---|---|
ARIMA(0,1,0)(0,1,1)[12] | 1490.14 | 0.13 |
ARIMA(0,1,0)(1,1,0)[12] | 1488.78 | 0.28 |
ARIMA(1,1,1)(1,1,0)[12] | 1488.04 | 0.69 |
ARIMA(1,1,2)(0,1,0)[12] | 1494.37 | 0.99 |
ARIMA(1,1,2)(0,1,1)[12] | 1471.39 | 0.86 |
ARIMA(1,1,2)(1,1,0)[12] | 1470.60 | 0.96 |
ARIMA(1,1,2)(2,1,0)[12] | 1468.68 * | 0.83 |
ARIMA(0,1,1)(0,1,1)[12] | 1487.68 | 0.61 |
ARIMA(0,1,1)(2,1,0)[12] | 1484.56 | 0.62 |
ARIMA(2,1,0)(0,1,1)[12] | 1478.89 | 0.44 |
ARIMA(2,1,0)(2,1,0)[12] | 1475.78 | 0.39 |
ARIMA(2,1,1)(0,1,1)[12] | 1472.15 | 0.62 |
ARIMA(2,1,1)(1,1,0)[12] | 1472.00 | 0.66 |
ARIMA(2,1,1)(2,1,0)[12] | 1469.30 | 0.56 |
ARIMA(2,1,2)(0,1,0)[12] | 1495.81 | 0.89 |
Model | Xreg | Lag | Β | T | P | AIC | Box–Ljung Test p |
---|---|---|---|---|---|---|---|
ARIMA(1,1,2)(2,1,0)[12] | / | / | / | / | / | 1468.68 | 0.83 |
ARIMAX(1,1,2)(2,1,0)[12] | P | 10 | 0.46 | 1.97 | 0.03 | 1328.84 * | 0.94 |
ARIMAX(1,1,2)(2,1,0)[12] | T | 9 | 20.37 | 1.66 | 0.04 | 1343.56 | 0.82 |
ARIMAX(1,1,2)(2,1,0)[12] | H | 9 | −6.10 | 1.74 | 0.04 | 1343.24 | 0.88 |
ARIMAX(1,1,2)(2,1,0)[12] | W | 7 | 207.94 | 1.83 | 0.03 | 1368.46 | 0.76 |
Date | Actual | Predict | MAE | RMSE | |||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | ||
2019.01 | 302 | 542 | 525 | 137.50 | 137.00 | 180.55 | 173.02 |
2019.02 | 201 | 188 | 520 | ||||
2019.03 | 521 | 511 | 541 | ||||
2019.04 | 880 | 879 | 577 | ||||
2019.05 | 806 | 1227 | 610 | ||||
2019.06 | 746 | 993 | 627 | ||||
2019.07 | 459 | 557 | 597 | ||||
2019.08 | 354 | 277 | 541 | ||||
2019.09 | 581 | 398 | 567 | ||||
2019.10 | 539 | 384 | 627 | ||||
2019.11 | 579 | 454 | 548 | ||||
2019.12 | 525 | 605 | 531 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Su, K.; Zhong, X. Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China. Int. J. Environ. Res. Public Health 2022, 19, 6625. https://doi.org/10.3390/ijerph19116625
Zhang H, Su K, Zhong X. Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China. International Journal of Environmental Research and Public Health. 2022; 19(11):6625. https://doi.org/10.3390/ijerph19116625
Chicago/Turabian StyleZhang, Hong, Kun Su, and Xiaoni Zhong. 2022. "Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China" International Journal of Environmental Research and Public Health 19, no. 11: 6625. https://doi.org/10.3390/ijerph19116625
APA StyleZhang, H., Su, K., & Zhong, X. (2022). Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China. International Journal of Environmental Research and Public Health, 19(11), 6625. https://doi.org/10.3390/ijerph19116625