Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study
Abstract
:1. Background
2. Methods
2.1. Data
2.2. Self-Assessed Health Status Measurement
- 1.
- Very good
- 2.
- Good
- 3.
- Fair
- 4.
- Poor
- 5.
- Very poor
2.3. Description of Variables
2.4. Statistical Analysis
3. Result
3.1. Characteristics of the Participants
3.2. Comparison of Variable Distribution in Different SAH Status
3.3. Associations between SAH Status and Its Determinants
3.4. Decomposition Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHARLS | China Health and Retirement Longitudinal Study |
SAH | Self-assessed of Health Status |
OR | Odds ratios |
CLHLS | China National Survey of Aging Health and longevity |
IRB | Institutional Review Board |
References
- World Health Organization. Aging and Health. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/ageing-and-health (accessed on 1 April 2021).
- The National Bureau of Statistics. Interpretation of the Communique of the Seventh National Census. Available online: http://www.stats.gov.cn/tjsj/sjjd/202105/t20210512_1817336.html (accessed on 2 April 2021).
- Chen, Y.M.; Liu, Z.F.; Li, X.D.; Huang, Y.X. Trends in China’s population ageing and projections for the elderly population from 2015 to 2050. Chin. J. Soc. Med. 2018, 035, 480–483. [Google Scholar]
- World Health Organization. Global Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Fogelholm, M.; Valve, R.; Absetz, P.; Heinonen, H.; Uutela, A.; Patja, K.; Karisto, A.; Konttinen, R.; Mäkelä, T.; Nissinen, A.; et al. Rural-urban differences in health and health behaviour: A baseline description of a community health-promotion programme for the elderly. J. Scand. J. Public Health 2006, 34, 632. [Google Scholar] [CrossRef]
- Anderson, T.J.; Saman, D.M.; Lipsky, M.S.; Lutfiyya, M.N. A cross-sectional study on health differences between rural and non-rural U.S. counties using the County Health Rankings. BMC Health Serv. Res. 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.V.; Goldman, N. Socioeconomic differences in health among older adults in Mexico. Soc. Sci. Med. 2007, 65, 1372–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J. Self-rated health and its application. J. Foreign Med. 1998, 03, 105–108. [Google Scholar]
- Shi, Y. A Study on the Influencing Factors of Self-Assessed Health of the Elderly in China: A Structural Equation Model; Yunnan University of Finance and Economics: Kunming, China, 2020; pp. 4–5. [Google Scholar]
- Shadbolt, B. Self-Rated Health as a Predictor of Survival among Patients with Advanced Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 2514. [Google Scholar] [CrossRef]
- Ocampo, J.M. Self-rated health: Importance of use in elderly adults. Colomb. Med. 2010, 41, 275–289. [Google Scholar]
- Oftedal, S.; Kolt, G.S.; Holliday, E.G. Stamatakisef, E.; Vandelanotteg, C.; Brownh, W.J.; Duncanab, M.J. Associations of health-behavior patterns, mental health and self-rated health. Pre-Ventive Med. 2018, 118, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, H.; Zhang, X. Comparison of self-assessed health status between urban and rural elderly based on Fairlie decomposition method. Public Health China 2018, 34, 516–520. [Google Scholar]
- Hu, S.Y.; Nan, S.X. Difference analysis of health status between urban and rural elderly: Based on baseline data of CHARLS 2011. Sci. Res. Aging 2016, 4, 74–80. [Google Scholar]
- Li, J.X.; Li, C.H. Study on health difference between urban and rural elderly population. J. Popul. Stud. 2014, 36, 37–47. [Google Scholar]
- Li, T.; Zhang, Y.L. Growth Curve Trajectories of Elderly People’s Health Indicators in China: Cohort Variations and Rural-urban Disparities. Popul. Stud. 2014, 38, 18–35. [Google Scholar]
- Ren, Q.; Huang, J. An empirical analysis of the impact of social pension on the health of the elderly: From the perspective of difference between urban and rural areas. Financ. Sci. 2015, 000, 109–120. [Google Scholar]
- Xie, E. Analysis of Regional Differences in Health in China. J. Shanxi Univ. Financ. Econ. 2011, 33, 11–24. [Google Scholar]
- Han, C.J.; Zhang, X. Disparity in self-rated health between male and female elderly: A Fairlie decomposition analysis. Chin. J. Dis. Control. 2019, 23, 75–79. [Google Scholar]
- Zhao, Y.H.; John Strauss, C.X.X.; Wang, Y.F.; Gong, J.Q.; Meng, Q.Q.; Wang, G.W.; Wang, H.L. China Health and Retirement Longitudinal Study Wave 4 User’s Guide; National School of Development, Peking University: Beijing, China, 2020. [Google Scholar]
- Du, P. Population Ageing; China Renmin University Press: Beijing, China, 1994. [Google Scholar]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Polit. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Letelier, A.; Heilmann, A.; Watt, R.G.; Jivraj, S.; Tsakos, G. Does intergenerational social mobility affect the general health, oral health, and physical function of older adults in England? Lancet 2016, 388, S68. [Google Scholar] [CrossRef]
- Denton, M.; Prus, S.; Walters, V. Gender differences in health: A Canadian study of the psychosocial, structural and be-hav-ioural determinants of health. Soc. Sci. Med. 2004, 58, 2585–2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhou, Z.; Shen, C.; Zhang, J.; Nawaz, R. Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counter-parts in China. Int. J. Environ. Res. Public Health 2020, 17, 955. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Li, D.; Gao, J.M.; Zhou, X.J.; Li, F.Z. Decomposing differences in depressive symptoms between older rural-to-urban migrant work-ers and their counterparts in mainland China. BMC Public Health 2020, 20, 1442. [Google Scholar] [CrossRef]
- Bustamante, A.V.; Fang, H.; Garza, J.; Carter-Pokras, O.; Wallace, S.P.; Rizzo, J.A.; Ortega, A.N. Variations in healthcare access and utilization among Mexican immigrants: The role of documentation status. J. Immigr. Minor. Health 2012, 14, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairlie, R.W. The Absence of the African-American Owned Business: An Analysis of the Dynamics of Self-Employment. J. Labor Econ. 1999, 17, 80–108. [Google Scholar] [CrossRef] [Green Version]
- Evans, G.W.; Kantrowitz, E. Socioeconomic Status and Health: The Potential Role of Environmental Risk Exposure. Annu. Rev. Public Health 2002, 23, 303–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, L.M.; Wang, Z.H.; Qi, S.G.; Zhang, X.; Chen, Z.H.; Zhang, M. Analysis on the status and influencing factors of self-rated health among Chinese senior citizens. China Chronic Dis. Prev. Control. 2019, 27, 10–15. [Google Scholar]
- Gong, Y.; Zhang, L.; Wang, Z.; Liang, Y. Pathway analysis of risk factors forsevere suicidal ideation: A survey in rural China. Ca-Nadian J. Public Health 2011, 102, 472–475. [Google Scholar] [CrossRef]
- Zhang, W.S.; Chen, W.Q.; Li, P.B.; Lin, X.Q.; Wu, X.B. Correlation analysis of the effect of lifestyle on self-rated health status among retired workers in Guangzhou. South China Prev. Med. 2004, 30, 55. [Google Scholar]
- Wang, D.M.; Nancy, M.H.; Wu, J.L.; Chen, G. The Physical Activity Status of Rural Elders and Environmental Factors Analysis in China. Popul. Dev. 2017, 23, 76–83. [Google Scholar]
- Geroldi, C.; Frisoni, G.B.; Rozzini, R.; De Leo, D.; Trabucchi, M. Principal Lifetime Occupation and Sleep Quality in the Elderly. Gerontology 1996, 42, 163–169. [Google Scholar] [CrossRef]
- Sekine, M.; Chandola, T.; Martikainen, P.; McGeoghegan, D.; Marmot, M.; Kagamimori, S. Explaining social inequalities in health by sleep: The Japanese civil servants study. J. Public Health 2006, 28, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.G.; Chen, C.X.; Li, J.M.; Wang, J. Investigation on the equality and habition of sleep among elderly people in city and country. J. Nuring Adm. 2007, 7, 15–16. [Google Scholar]
- Małgorzata, S.; Wojciech, D.; Andrzej, G. Subjective and objective health status ex-smokers among elderly persons. CINDI WHO survey. Prz. Lek. 2006, 63, 1095–1098. [Google Scholar]
- Feinstein, J.S. The Relationship between Socioeconomic Status and Health: A Review of the Literature. Milbank Q. 1993, 71, 279. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhou, Z.; Si, Y.; Xu, Y.; Shen, C.; Wang, Y.; Wang, X. Unequal distribution of health human resource in mainland China: What are the determinants from a comprehensive perspective? Int. J. Equity Health 2018, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, S.; Ding, Y. Disease Shock, Intergenerational Interaction and Health Poverty: An Empirical Survey of Farmers in Nine Counties in Three Western Provinces. J. Northwest Univ. 2021, 51, 62–75. [Google Scholar]
Type of Variables | Name of Variables | Variable Assignment |
---|---|---|
Dependent variable | SAH | Bad SAH = 0; Good SAH = 1 |
Grouping variable | Location of residential address | Rural = 0; Urban = 1 |
Demographic and sociological characteristics | Gender | Female = 0; Male = 1 |
Age | 60–64 = 1; 65–74 = 2; ≥75 = 3 | |
Education level | Below primary school = 1; Primary school = 2; Middle school and above = 3 | |
Marital status | Married and live with spouse = 1; Married but not live with spouse = 2; Divorced and don’t live together as a couple anymore = 3; Widower = 4; Never married = 5 | |
Minorities | Han = 0; Ethnic minorities = 1 | |
Religious beliefs | No = 0; Yes = 1 | |
Sleeping time | ≤4 h = 1; 4–8 h = 2; >8 h = 3 | |
Smoking | No = 0; Yes = 1 | |
Drinking | No = 0; Yes = 1 | |
Social activity | No = 0; Yes = 1 | |
Physical activity | No = 0; Yes = 1 | |
Economic status | Region | East = 1; Middle = 2; West = 3 |
Assets quantiles | Poorest = 1; Poorer = 2; Middle = 3; Richer = 4; Richest = 5 |
Variable | Rural N (%) | Urban N (%) | Total | p-Value |
---|---|---|---|---|
SAH | <0.001 | |||
Bad+ | 5819 (80.01) | 1791 (75.99) | 7610 (79.02) | |
Good | 1454 (19.99) | 566 (24.01) | 2020 (20.98) | |
Demographic and Sociological Characteristics | ||||
Gender | 0.219 | |||
Female+ | 3674 (50.16) | 1225 (51.97) | 4899 (50.87) | |
Male | 3599 (49.84) | 1132 (48.03) | 4731 (49.13) | |
Age | 0.147 | |||
60–64+ | 2386 (32.81) | 778 (33.01) | 3164 (32.86) | |
65–74 | 3541 (48.69) | 1104 (46.84) | 4645 (48.23) | |
≥75 | 1346 (18.50) | 475 (20.15) | 1821 (18.91) | |
Education level | <0.001 | |||
Below primary school+ | 4452 (61.22) | 668 (28.34) | 5120 (53.17) | |
Primary school | 1580 (21.72) | 512 (21.72) | 2092 (21.72) | |
Middle school and above | 1241 (17.06) | 1177 (49.94) | 2418 (25.11) | |
Marital status | <0.001 | |||
Married and live with spouse+ | 5510 (75.76) | 1811 (76.84) | 7321 (76.02) | |
Married but not live with spouse | 253 (3.48) | 71 (3.01) | 324 (3.36) | |
Divorced and don’t live together as a couple anymore | 70 (0.96) | 46 (1.95) | 116 (1.21) | |
Widower | 1385 (19.04) | 422 (17.90) | 1807 (18.77) | |
Never married | 55 (0.76) | 7 (0.30) | 62 (0.64) | |
Minorities | 0.278 | |||
Han+ | 6750 (92.81) | 2203 (93.47) | 8953 (92.97) | |
Ethnic minorities | 523 (7.19) | 154 (6.53) | 677 (7.03) | |
Religious beliefs | 0.514 | |||
No+ | 6479 (89.08) | 2111 (89.56) | 8590 (89.20) | |
Yes | 794 (10.92) | 246 (10.44) | 1040 (10.80) | |
Life-Style and Health Behavior | ||||
Sleeping time | <0.001 | |||
≤4 h+ | 1716 (23.61) | 387 (16.43) | 2103 (21.84) | |
4–8 h | 4670 (64.22) | 1847 (78.40) | 6517 (67.70) | |
>8 h | 885 (12.17) | 122 (6.17) | 1007 (10.46) | |
Smoking | <0.01 | |||
No+ | 3966 (54.55) | 1382 (58.68) | 5348 (55.56) | |
Yes | 3305 (45.45) | 973 (41.32) | 4278 (45.46) | |
Drinking | <0.01 | |||
No+ | 5028 (69.15) | 1551 (65.86) | ||
Yes | 2243 (30.85) | 804 (34.14) | ||
Social activity | <0.001 | |||
No+ | 4063 (55.88) | 895 (37.99) | 4958 (51.50) | |
Yes | 3208 (45.12) | 1461 (62.01) | 4669 (49.50) | |
Physical activity | <0.01 | |||
No+ | 4108 (56.50) | 1253 (53.17) | 5361 (55.69) | |
Yes | 3163 (43.50) | 1103 (46.83) | 4266 (44.31) | |
Economic Status | ||||
Region | <0.001 | |||
East+ | 2474 (34.31) | 620 (27.42) | 3094 (32.67) | |
Middle | 2409 (33.41) | 979 (43.30) | 3388 (35.77) | |
West | 2327 (32.28) | 662 (29.28) | 2989 (21.56) | |
Assets quantiles | <0.001 | |||
Poorest+ | 1890 (26.02) | 328 (13.94) | 2218 (23.06) | |
Poorer | 1866 (25.68) | 319 (13.56) | 2185 (22.72) | |
Middle | 1457 (20.06) | 433 (18.40) | 1890 (19.65) | |
Richer | 1290 (17.76) | 509 (21.63) | 1799 (18.70) | |
Richest | 762 (10.48) | 764 (32.47) | 1526 (15.87) |
Variable | Bad SAH | Good SAH | ||||
---|---|---|---|---|---|---|
Rural N (%) | Urban N (%) | p-Value | Rural N (%) | Urban N (%) | p-Value | |
Demographic and sociological characteristics | ||||||
Gender | 0.208 | 0.463 | ||||
Female | 3017 (51.85) | 959 (53.55) | 657 (45.19) | 266 (47.00) | ||
Male | 2802 (48.15) | 832 (46.45) | 797 (54.81) | 300 (53.00) | ||
Age | 0.088 | 0.694 | ||||
60–64 | 1845 (31.71) | 556 (31.04) | 541 (37.21) | 222 (39.23) | ||
65–74 | 2876 (49.42) | 855 (47.74) | 665 (45.74) | 249 (43.99) | ||
≥75 | 1098 (18.87) | 380 (21.22) | 248 (17.06) | 95 (16.78) | ||
Education level | <0.001 | <0.001 | ||||
Below primary school | 3567 (61.30) | 517 (28.87) | 885 (60.87) | 151 (26.68) | ||
Primary school | 1321 (22.70) | 400 (22.33) | 259 (17.81) | 112 (19.79) | ||
Middle school and above | 931 (16.00) | 874 (48.80) | 310 (21.32) | 303 (53.53) | ||
Marital status | <0.01 | 0.138 | ||||
Married and live with spouse | 4398 (75.58) | 1366 (76.27) | 1112 (76.48) | 445 (78.62) | ||
Married but not live with spouse | 189 (3.25) | 52 (2.90) | 64 (4.40) | 19 (3.36) | ||
Divorced and don’ t live together as a couple anymore | 53 (0.91) | 35 (1.95) | 17 (1.17) | 11 (1.94) | ||
Widower | 1133 (19.47) | 331 (18.48) | 252 (17.33) | 91 (16.08) | ||
Never married | 53 (0.79) | 7 (0.39) | 9 (0.62) | 0 (0.00) | ||
Minorities | 0.269 | 0.795 | ||||
Han | 5401 (92.82) | 1676 (93.58) | 1349 (92.78) | 527 (93.11) | ||
Ethnic minorities | 418 (7.18) | 115 (6.42) | 105 (7.22) | 39 (6.89) | ||
Religious beliefs | 0.491 | 0.855 | ||||
No | 5191 (89.21) | 1608 (89.78) | 1288 (88.58) | 503 (88.87) | ||
Yes | 628 (10.79) | 183 (10.22) | 166 (11.42) | 63 (11.13) | ||
Life-style and health behavior | ||||||
Sleeping time | <0.001 | <0.001 | ||||
≤4 h | 1495 (25.70) | 352 (19.66) | 221 (15.21) | 35 (6.18) | ||
4–8 h | 3675 (63.17) | 1347 (75.25) | 995 (68.48) | 500 (88.34) | ||
>8 h | 648 (11.13) | 91 (5.09) | 237 (16.31) | 31 (5.48) | ||
Smoking | <0.05 | <0.05 | ||||
No | 3218 (55.31) | 1048 (58.58) | 748 (51.48) | 334 (59.01) | ||
Yes | 3354 (44.69) | 741 (41.42) | 705 (48.52) | 232 (40.99) | ||
Drinking | 0.134 | <0.01 | ||||
No | 4127 (70.94) | 1236 (69.09) | 901 (62.01) | 315 (55.65) | ||
Yes | 2254 (29.06) | 553 (30.91) | 552 (37.99) | 251 (44.35) | ||
Social activity | <0.001 | <0.001 | ||||
No | 3297 (56.67) | 728 (40.67) | 766 (52.72) | 167 (29.51) | ||
Yes | 2521 (43.33) | 1097 (59.33) | 687 (47.28) | 399 (70.49) | ||
Physical activity | 0.144 | <0.01 | ||||
No | 3322 (57.10) | 987 (55.14) | 786 (54.09) | 266 (47.00) | ||
Yes | 2496 (42.90) | 974 (44.86) | 667 (45.91) | 300 (53.00) | ||
Economic status | ||||||
Region | <0.001 | <0.001 | ||||
East | 1866 (32.32) | 449 (26.11) | 608 (42.34) | 171 (31.62) | ||
Middle | 1983 (34.34) | 745 (43.31) | 426 (29.67) | 234 (43.25) | ||
West | 1925 (33.34) | 526 (30.58) | 402 (27.99) | 136 (25.14) | ||
Assets quantiles | <0.001 | <0.001 | ||||
Poorest | 1578 (27.15) | 259 (14.47) | 312 (21.47) | 69 (12.26) | ||
Poorer | 1522 (26.19) | 262 (14.64) | 344 (23.68) | 57 (10.12) | ||
Middle | 1492 (19.91) | 333 (18.60) | 300 (20.65) | 100 (17.76) | ||
Richer | 997 (17.15) | 390 (21.79) | 293 (20.17) | 119 (21.14) | ||
Richest | 558 (9.60) | 546 (30.50) | 204 (14.55) | 218 (38.72) |
Variable | Rural | Urban | ||||
---|---|---|---|---|---|---|
OR | [95% CI] | OR | [95% CI] | |||
Demographic and sociological characteristics | ||||||
Gender | 1.227 * | 1.019 | 1.478 | 1.472 * | 1.088 | 1.991 |
Age | ||||||
65–74 | 0.851 * | 0.744 | 0.974 | 0.733 ** | 0.584 | 0.920 |
≥75 | 0.867 | 0.720 | 1.043 | 0.721 * | 0.531 | 0.979 |
Education level | ||||||
Primary school | 0.679 | 0.577 | 0.799 | 0.819 | 0.605 | 1.108 |
Middle school and above | 1.025 | 0.866 | 1.212 | 0.814 | 0.628 | 1.057 |
Marital status | ||||||
Married but not live with spouse | 1.238 | 0.914 | 1.676 | 1.130 | 0.618 | 2.066 |
Divorced and don’ t live together as a couple anymore | 1.207 | 0.654 | 2.226 | 0.706 | 0.317 | 1.573 |
Widower | 1.057 | 0.895 | 1.246 | 1.133 | 0.848 | 1.516 |
Never married | 0.715 | 0.345 | 1.481 | 1.000 | ||
Minorities | 1.078 | 0.849 | 1.368 | 1.197 | 0.796 | 1.799 |
Religious beliefs | 1.085 | 0.898 | 1.310 | 1.126 | 0.804 | 1.577 |
Life-style and health behavior | ||||||
Sleeping time | ||||||
4–8 h | 1.630 *** | 1.386 | 1.919 | 3.347 *** | 2.291 | 4.889 |
>8 h | 2.293 *** | 1.860 | 2.827 | 3.337 *** | 1.893 | 5.882 |
Smoking | 0.904 | 0.762 | 1.071 | 0.642 ** | 0.483 | 0.853 |
Drinking | 1.375 *** | 1.200 | 1.577 | 1.635 *** | 1.299 | 2.059 |
Social activity | 1.098 | 0.973 | 1.238 | 1.469 ** | 1.173 | 1.838 |
Physical activity | 1.077 | 0.954 | 1.217 | 1.195 | 0.972 | 1.470 |
Economic status | ||||||
Region | ||||||
Middle | 0.697 *** | 0.605 | 0.804 | 0.931 | 0.733 | 1.182 |
West | 0.696 *** | 0.598 | 0.809 | 0.775 | 0.591 | 1.016 |
Assets quantiles | ||||||
Poorer | 1.163 | 0.979 | 1.382 | 0.851 | 0.562 | 1.299 |
Middle | 1.193 | 0.994 | 1.432 | 0.973 | 0.671 | 1.411 |
Richer | 1.311 ** | 1.087 | 1.580 | 1.010 | 0.703 | 1.451 |
Richest | 1.522 *** | 1.230 | 1.885 | 1.224 | 0.869 | 1.723 |
Constant | 0.154 *** | 0.121 | 0.196 | 0.092 *** | 0.053 | 0.158 |
Prob > chi2 | <0.001 | <0.001 | ||||
Number of observation | 7202 | 2251 |
Terms of Decomposition | SAH | ||
---|---|---|---|
Difference | −0.0399 | ||
Explained (%) | −0.0169 (42.39%) | ||
Explained | |||
Contribution to difference | Contribution (%) | [95% CI] | |
Gender | 4.01 | −0.0018 | 0.0005 |
Age | 2.14 | −0.0009 | 0.0002 |
Education level | 21.05 | −0.0134 | 0.0063 |
Marital status | 1.26 | −0.0016 | 0.0012 |
Minorities | −0.32 | −0.0002 | 0.0003 |
Religious beliefs | −0.70 | −0.0002 | 0.0005 |
Sleeping time | −0.29 | −0.0029 | 0.0030 |
Smoking | 3.50 | −0.0015 | 0.0003 |
Drinking | 11.45 *** | −0.0028 | −0.0011 |
Social activity | 15.68 | −0.0061 | 0.0008 |
Physical activity | 2.65 | −0.0012 | 0.0003 |
Region | −33.92 *** | 0.0033 | 0.0082 |
Assets quantiles | 73.50 * | −0.0198 | −0.0051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, D.; Gao, J. Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 8056. https://doi.org/10.3390/ijerph18158056
Zhang J, Li D, Gao J. Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(15):8056. https://doi.org/10.3390/ijerph18158056
Chicago/Turabian StyleZhang, Jian, Dan Li, and Jianmin Gao. 2021. "Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 15: 8056. https://doi.org/10.3390/ijerph18158056
APA StyleZhang, J., Li, D., & Gao, J. (2021). Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 18(15), 8056. https://doi.org/10.3390/ijerph18158056