The Effect of Containment Measures during the Covid-19 Pandemic to Sedentary Behavior of Thai Adults: Evidence from Thailand’s Surveillance on Physical Activity 2019–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population, and Sample
2.2. Data Collection and Measurements
2.3. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics of Survey Participants
3.2. Increased Sedentary Behavior (SB) during the Coronavirus Disease 2019 (Covid-19) Pandemic
3.3. Correlates of SB during the Covid-19 Pandemic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, N.; Healy, G.N.; Dempsey, P.C.; Salmon, J.; Timperio, A.; Clark, B.K.; Goode, A.D.; Koorts, H.; Ridgers, N.D.; Hadgraft, N.T.; et al. Sedentary behavior and public health: Integrating the evidence and identifying potential solutions. Annu. Rev. Public Health 2020, 41, 265–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rezende, L.F.M.; Lopes, M.R.; Rey-Lopez, J.P.; Matsudo, V.K.R.; Luiz, O.d.C. Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE 2014, 9, e105620. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, F.-C.; Li, J.-X.; Huang, K.-Y.; Yang, X.-L.; Chen, J.-C.; Liu, X.-Q.; Cao, J.; Shen, C.; Yu, L.; et al. Sedentary behavior and risk of incident cardiovascular disease among Chinese adults. Sci. Bull. 2020, 65, 1760–1766. [Google Scholar] [CrossRef]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Sedentary behavior as a mediator of type 2 diabetes. Med. Sport Sci. 2014, 60, 11–26. [Google Scholar]
- Bellettiere, J.; LaMonte, M.J.; Evenson, K.R.; Rillamas-Sun, E.; Kerr, J.; Lee, I.-M.; Di, C.; Rosenberg, D.E.; Stefanick, M.L.; Buchner, D.M. Sedentary behavior and cardiovascular disease in older women: The OPACH Study. Circulation 2019, 139, 1036–1046. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Gibson, A.-M.; Muggeridge, D.J.; Hughes, A.R.; Kelly, L.; Kirk, A. An examination of objectively-measured sedentary behavior and mental well-being in adults across week days and weekends. PLoS ONE 2017, 12, e0185143. [Google Scholar] [CrossRef] [Green Version]
- Tamminen, N.; Reinikainen, J.; Appelqvist-Schmidlechner, K.; Borodulin, K.; Mäki-Opas, T.; Solin, P. Associations of physical activity with positive mental health: A population-based study. Ment. Health Phys. Act. 2020, 18, 100319. [Google Scholar] [CrossRef]
- Owari, Y.; Miyatake, N. Relationship between Psychological Distress and Continuous Sedentary Behavior in Healthy Older Adults. Medicina 2019, 55, 324. [Google Scholar] [CrossRef] [Green Version]
- Hallgren, M.; Nguyen, T.-T.-D.; Owen, N.; Vancampfort, D.; Dunstan, D.W.; Wallin, P.; Andersson, G.; Ekblom-Bak, E. Associations of sedentary behavior in leisure and occupational contexts with symptoms of depression and anxiety. Prev. Med. 2020, 133, 106021. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Colman, I.; Goldfield, G.S.; Janssen, I.; Wang, J.; Podinic, I.; Tremblay, M.S.; Saunders, T.J.; Sampson, M.; Chaput, J.-P. Combinations of physical activity, sedentary time, and sleep duration and their associations with depressive symptoms and other mental health problems in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Tully, M.A.; McMullan, I.I.; Blackburn, N.E.; Wilson, J.J.; Coll-Planas, L.; Deidda, M.; Caserotti, P.; Rothenbacher, D. Is Sedentary Behavior or Physical Activity Associated With Loneliness in Older Adults? Results of the European-Wide SITLESS Study. J. Aging Phys. Act. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Teychenne, M.; Stephens, L.D.; Costigan, S.A.; Olstad, D.L.; Stubbs, B.; Turner, A.I. The association between sedentary behaviour and indicators of stress: A systematic review. BMC Public Health 2019, 19, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.; Altenburg, T.M.; Chinapaw, M.J.; On Behalf Of Sbrn Terminology Consensus Project Participants. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- MoPH. 5-Year National NCDs Prevention and Control Plan (2017–2021), 1st ed.; The Policy and Strategy Section BoN-CD, Ministry of Public Health, Ed.; Emotion Art Co., Ltd.: Bangkok, Thailand, 2017. [Google Scholar]
- Helson, R.; Soto, C.J.; Cate, R.A. From young adulthood through the middle ages. Handb. Personal. Dev. 2006, 337–352. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Zheng, C.; Huang, W.Y.; Sheridan, S.; Sit, C.H.-P.; Chen, X.-K.; Wong, S.H.-S. COVID-19 pandemic brings a sedentary lifestyle in young adults: A cross-sectional and longitudinal study. Int. J. Environ. Res. Public Health 2020, 17, 6035. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.W.; Beyl, R.A.; Fearnbach, S.N.; Altazan, A.D.; Martin, C.K.; Redman, L.M. The impact of COVID-19 stay-at-home orders on health behaviors in adults. Obesity 2021, 29, 438–445. [Google Scholar] [CrossRef]
- Botero, J.P.; Farah, B.Q.; Correia, M.D.A.; Lofrano-Prado, M.C.; Cucato, G.G.; Shumate, G.; Ritti-Dias, R.M.; Prado, W.L.D. Impact of the COVID-19 pandemic stay at home order and social isolation on physical activity levels and sedentary behavior in Brazilian adults. Einstein 2021, 19, eAE6156. [Google Scholar] [CrossRef]
- Thailand Physical Activity Knowledge Development Centre T (Ed.) Surveillance on Physical Activity Round 8 (2019); Thailand Physical Activity Knowledge Development Centre T: Nakhon Pathom, Thailand, 2019. [Google Scholar]
- Average Duration of Daily Internet Use in Thailand in 2019. Available online: https://www.statista.com/statistics/1129529/thailand-daily-duration-of-internet-use-by-age-group/ (accessed on 10 January 2021).
- Average Time Spent Using Online Media in Thailand in Third Quarter of 2020. Available online: https://www.statista.com/statistics/804035/daily-time-spent-using-online-media-by-activity-thailand/#statisticContainer (accessed on 10 January 2021).
- WHO. Novel Coronavirus (2019-nCoV) WHO Thailand Situation Report—5 April 2020; World Health Organization: Bangkok, Thailand, 2020. [Google Scholar]
- Koyanagi, A.; Stubbs, B.; Vancampfort, D. Correlates of sedentary behavior in the general population: A cross-sectional study using nationally representative data from six low-and middle-income countries. PLoS ONE 2018, 13, e0202222. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.M.; Chen, B.; Wang, N.X.; Whitton, C.; Direito, A.; Petrunoff, N.; Müller-Riemenschneider, F. Correlates of sedentary behaviour in Asian adults: A systematic review. Obes. Rev. 2020, 21, e12976. [Google Scholar] [CrossRef] [PubMed]
- Werneck, A.O.; Baldew, S.-S.; Miranda, J.J.; Arnesto, O.D.; Stubbs, B.; Silva, D.R. Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: The South American physical activity and sedentary behavior network (SAPASEN). Int. J. Behav. Nutr. Phys. Act. 2019, 16, 68. [Google Scholar] [CrossRef] [Green Version]
- Görner, K.; Reineke, A. The influence of endurance and strength training on body composition and physical fitness in female students. J. Phys. Educ. Sport 2020, 20, 2013–2020. [Google Scholar]
- García, C.S.; Zauder, R.; Sánchez, G.F.L. Analysis of body composition and physical fitness of futsal players at school age according to their level of physical activity, diet and body image. Atena J. Sports Sci. 2019, 1, 1–20. [Google Scholar]
- Hossinzadeh, K. Determinants of Family’s Self-Efficacy for Physical Activity; A Qualitative Study. J. Health 2016, 3, 43–48. [Google Scholar]
- Hohl, D.H.; Schultze, M.; Keller, J.; Heuse, S.; Luszczynska, A.; Knoll, N. Inter-relations between partner—provided support and self-efficacy: A dyadic longitudinal analysis. Appl. Psychol. Health Well Being 2019, 11, 522–542. [Google Scholar] [CrossRef]
- O’Donoghue, G.; on behalf of the DEDIPAC Consortium; Perchoux, C.; Mensah, K.; Lakerveld, J.; Van Der Ploeg, H.; Bernaards, C.; Chastin, S.F.M.; Simon, C.; O’Gorman, D.; et al. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: A socio-ecological approach. BMC Public Health 2016, 16, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanamee, S.; Pinyopornpanish, K.; Wattanapisit, A.; Suerungruang, S.; Thaikla, K.; Jiraporncharoen, W.; Angkurawaranon, C. A population-based survey on physical inactivity and leisure time physical activity among adults in Chiang Mai, Thailand, 2014. Arch. Public Health 2017, 75, 41. [Google Scholar] [CrossRef] [Green Version]
- Cuny, C.; Opaswongkarn, T. “Why Do Young Thai Women Desire White Skin?” Understanding Conscious and Nonconscious Motivations of Young Women in Bangkok. Psychol. Mark. 2017, 34, 556–568. [Google Scholar] [CrossRef]
- Molnar, G.; Amin, S.N.; Kanemasu, Y. Women, Sport and Exercise in the Asia-Pacific Region: Domination, Resistance, Accommodation; Routledge: London, UK, 2018. [Google Scholar]
- Barari, S.; Caria, S.; Davola, A.; Falco, P.; Fetzer, T.; Fiorin, S.; Hensel, L.; Ivchenko, A.; Jachimowicz, J.; King, G. Evaluating COVID-19 public health messaging in Italy: Self-reported compliance and growing mental health concerns. medRxiv 2020. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef] [Green Version]
- Cabanas-Sánchez, V.; García-Cervantes, L.; Esteban-Gonzalo, L.; Girela-Rejón, M.J.; Castro-Piñero, J.; Veiga, Ó.L. Social correlates of sedentary behavior in young people: The up&down study. J. Sport Health Sci. 2020, 9, 189–196. [Google Scholar]
- Hamilton, J.L.; Nesi, J.; Choukas-Bradley, S. Teens and social media during the COVID-19 pandemic: Staying socially connected while physically distant. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Nagata, J.M.; Magid, H.S.A.; Gabriel, K.P. Screen time for children and adolescents during the COVID-19 pandemic. Obesity 2020, 28, 1582–1583. [Google Scholar] [CrossRef] [PubMed]
- Boulianne, S.; Theocharis, Y. Young people, digital media, and engagement: A meta-analysis of research. Soc. Sci. Comput. Rev. 2020, 38, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Fennell, C.; Barkley, J.E.; Lepp, A. The relationship between cell phone use, physical activity, and sedentary behavior in adults aged 18–80. Comput. Hum. Behav. 2019, 90, 53–59. [Google Scholar] [CrossRef]
- Rigg, J. More than Rural: Textures of Thailand’s Agrarian Transformation; University of Hawaii Press: Honolulu, HI, USA, 2019. [Google Scholar]
- Chen, C.; Dieterich, A.V.; Koh, J.J.E.; Akksilp, K.; Tong, E.H.; Budtarad, N.; Müller, A.M.; Anothaisintawee, T.; Tai, B.C.; Rattanavipapong, W. The physical activity at work (PAW) study protocol: A cluster randomised trial of a multicomponent short-break intervention to reduce sitting time and increase physical activity among office workers in Thailand. BMC Public Health 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bangkok Post. Actor Matthew Deane has coronavirus. In Bangkok Post; Bangkok Post: Bangkok, Thailand, 2020. [Google Scholar]
- Sallis, J.F.; Adlakha, D.; Oyeyemi, A.; Salvo, D. An international physical activity and public health research agenda to inform COVID-19 policies and practices. J. Sport Health Sci. 2020, 9, 328–334. [Google Scholar] [CrossRef] [PubMed]
Variable | SPA2019 (n = 5379) | SPA2020 (n = 6531) | Z | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
95% C.I. | 95% C.I. | |||||||||
n | % | Lower | Upper | n | % | Lower | Upper | |||
Sex | ||||||||||
Male | 2607 | 48.5 | 47.0 | 49.6 | 3326 | 50.9 | 49.7 | 52.1 | ||
Female | 2772 | 51.5 | 50.4 | 53.0 | 3205 | 49.1 | 47.9 | 50.3 | ||
Age group (years) | ||||||||||
Young adults (18–39) | 2359 | 43.9 | 42.5 | 45.1 | 4513 | 69.1 | 67.8 | 70.2 | ||
Middle-age adults (40–64) | 3020 | 56.1 | 54.9 | 57.5 | 2018 | 30.9 | 29.8 | 32.2 | ||
Education level | 1426.1 | 0.000 | ||||||||
Primary and lower | 1964 | 36.5 | 35.4 | 38.0 | 572 | 8.8 | 8.0 | 9.5 | ||
Secondary Education | 925 | 17.2 | 16.2 | 18.3 | 804 | 12.3 | 11.5 | 13.2 | ||
Post-secondary Education | 2490 | 46.3 | 44.8 | 47.4 | 5155 | 78.9 | 77.9 | 80.0 | ||
Occupation | 623.8 | 0.000 | ||||||||
Student | 212 | 4.0 | 3.4 | 4.5 | 423 | 6.6 | 6.0 | 7.2 | ||
Formal sector | 1214 | 22.7 | 21.5 | 23.9 | 1410 | 21.9 | 20.9 | 23.0 | ||
Informal sector | 986 | 18.4 | 17.4 | 19.4 | 2258 | 35.1 | 34.1 | 36.4 | ||
Private Enterprise | 1164 | 21.8 | 20.6 | 22.9 | 1342 | 20.9 | 19.8 | 21.9 | ||
Agriculture | 900 | 16.8 | 15.7 | 17.9 | 403 | 6.3 | 5.7 | 6.9 | ||
Unemployed | 871 | 16.3 | 15.4 | 17.3 | 589 | 9.2 | 8.4 | 9.8 | ||
Having a debilitating chronic dis-ease/condition | ||||||||||
Yes | 1170 | 21.8 | 20.7 | 22.9 | 1570 | 24.0 | 22.8 | 25.0 | ||
No | 4209 | 78.2 | 77.1 | 79.3 | 4961 | 76.0 | 75.0 | 77.2 | ||
Area of residence | 171.3 | 0.000 | ||||||||
Urban | 2866 | 53.3 | 51.9 | 54.6 | 4321 | 66.2 | 64.8 | 67.1 | ||
Rural | 2513 | 46.7 | 45.4 | 48.1 | 2210 | 33.8 | 32.9 | 35.2 | ||
Having sufficient MVPA | ||||||||||
Yes | 3329 | 74.6 | 72.9 | 75.3 | 3722 | 57.0 | 56.2 | 58.6 | ||
No | 1131 | 25.4 | 24.7 | 27.1 | 2809 | 43.0 | 41.4 | 43.8 | ||
Living in a Covid-19 risk zones (as of March 2020) | ||||||||||
Red | 2152 | 33.0 | 31.8 | 34.2 | ||||||
Orange | 3923 | 60.0 | 58.9 | 61.4 | ||||||
Green | 456 | 7.0 | 6.3 | 7.6 | ||||||
Exposed to the ‘Fit from Home’ (FFH) campaign | ||||||||||
Yes | 1734 | 26.6 | 25.5 | 27.7 | ||||||
No | 4797 | 73.4 | 72.3 | 74.5 | ||||||
Adversely affected by Covid-19 pandemic | ||||||||||
Yes | 5608 | 85.9 | 85.0 | 86.7 | ||||||
No | 923 | 14.1 | 13.3 | 15.0 | ||||||
Having Sedentary Behaviour (Over 13 h/Day) | ||||||||||
Yes | 3546 | 65.9 | 64.6 | 67.2 | 4472 | 69.2 | 68.1 | 70.3 | ||
No | 1833 | 34.1 | 32.8 | 35.4 | 1995 | 30.8 | 29.7 | 31.9 |
Variable | SPA2019 | SPA2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Percentage | 95% C.I. | S.D. | X2 | p-Value | Percentage | 95% C.I. | S.D. | X2 | p-Value | |||
Lower | Upper | Lower | Upper | |||||||||
Overall | 65.9 | 64.6 | 67.2 | 0.474 | 69.2 | 68.1 | 70.3 | 0.462 | ||||
Sex | 71.2 | 0.000 | 6.3 | 0.012 | ||||||||
Male | 60.3 | 58.3 | 62.0 | 0.490 | 67.7 | 66.1 | 69.2 | 0.468 | ||||
Female | 71.2 | 69.5 | 72.8 | 0.453 | 70.6 | 69.2 | 72.3 | 0.456 | ||||
Age group (years) | 1.2 | 0.268 | 49.0 | 0.000 | ||||||||
Young adults (18–39) | 65.1 | 63.1 | 67.1 | 0.477 | 71.8 | 70.6 | 73.3 | 0.450 | ||||
Middle-age adults (40–64) | 66.6 | 64.8 | 68.0 | 0.472 | 63.1 | 60.9 | 65.2 | 0.483 | ||||
Education level | 73.1 | 0.000 | 68.6 | 0.000 | ||||||||
Primary Education and lower | 60.3 | 58.2 | 62.5 | 0.489 | 58.1 | 54.0 | 62.4 | 0.494 | ||||
Secondary Education | 61.8 | 58.1 | 65.0 | 0.486 | 61.4 | 58.0 | 64.6 | 0.487 | ||||
Post-secondary Education | 71.8 | 70.1 | 73.6 | 0.450 | 71.6 | 70.4 | 72.7 | 0.451 | ||||
Occupation | 277.8 | 0.000 | 125.4 | 0.000 | ||||||||
Student | 75.0 | 69.5 | 81.1 | 0.434 | 77.3 | 73.1 | 81.3 | 0.420 | ||||
Formal sector | 75.4 | 72.9 | 77.8 | 0.431 | 68.0 | 65.5 | 70.3 | 0.467 | ||||
Informal sector | 74.4 | 71.8 | 77.1 | 0.436 | 73.8 | 71.8 | 75.5 | 0.440 | ||||
Private Enterprise | 56.5 | 53.8 | 59.2 | 0.496 | 64.6 | 62.1 | 67.3 | 0.478 | ||||
Agriculture | 47.8 | 44.4 | 51.2 | 0.500 | 49.2 | 44.6 | 54.5 | 0.501 | ||||
Unemployed | 71.6 | 68.7 | 74.7 | 0.451 | 72.1 | 68.5 | 75.7 | 0.449 | ||||
Having a debilitating chronic dis-ease/condition | 8.1 | 0.005 | 2.3 | 0.130 | ||||||||
Yes | 69.4 | 66.8 | 72.1 | 0.461 | 70.7 | 68.5 | 73.1 | 0.455 | ||||
No | 65.0 | 63.4 | 66.3 | 0.477 | 68.7 | 67.4 | 70.0 | 0.464 | ||||
Area of residence | 45.2 | 0.000 | 41.0 | 0.000 | ||||||||
Urban | 70.0 | 68.0 | 71.6 | 0.459 | 71.8 | 70.5 | 73.2 | 0.450 | ||||
Rural | 61.3 | 59.3 | 63.1 | 0.487 | 64.0 | 62.0 | 66.1 | 0.480 | ||||
Having sufficient MVPA | 616.0 | 0.000 | 5.5 | 0.019 | ||||||||
Yes | 56.4 | 54.8 | 57.9 | 0.496 | 68.0 | 68.1 | 70.3 | 0.462 | ||||
No | 93.0 | 91.7 | 94.3 | 0.255 | 70.7 | 69.1 | 72.4 | 0.455 | ||||
Living in a Covid-19 risk zones (as of March 2020) | 33.8 | 0.000 | ||||||||||
Red | 73.6 | 71.6 | 75.6 | 0.442 | ||||||||
Orange | 67.6 | 66.2 | 69.1 | 0.468 | ||||||||
Green | 61.6 | 57.1 | 66.2 | 0.486 | ||||||||
Exposed to the ‘Fit from Home’ (FFH) campaign | 2.4 | 0.118 | ||||||||||
Yes | 67.4 | 65.4 | 69.9 | 0.468 | ||||||||
No | 69.8 | 68.5 | 71.0 | 0.460 | ||||||||
Adversely affected by Covid-19 pandemic | 0.5 | 0.474 | ||||||||||
Yes | 69.0 | 67.8 | 70.3 | 0.463 | ||||||||
No | 69.9 | 67.1 | 73.3 | 0.458 |
Variable | Odds Ratio | p-Value | 95% C.I. for EXP(B) | |
---|---|---|---|---|
Lower | Upper | |||
Sex | ||||
Male (Ref.) | ||||
Female | 1.120 | 0.044 | 1.003 | 1.250 |
Age group (years) | ||||
Young adults (18–39) (Ref.) | ||||
Middle-age adults (40–64) | 0.707 | 0.000 | 0.626 | 0.798 |
Education level | ||||
Lower and primary (Ref.) | ||||
Secondary | 1.065 | 0.586 | 0.849 | 1.336 |
Post-secondary | 1.532 | 0.000 | 1.267 | 1.854 |
Occupation | ||||
Agriculture (Ref.) | ||||
Student | 2.360 | 0.000 | 1.724 | 3.231 |
Formal sector | 1.745 | 0.000 | 1.382 | 2.205 |
Informal sector | 2.191 | 0.000 | 1.744 | 2.752 |
Private enterprise | 1.615 | 0.000 | 1.279 | 2.039 |
Unemployed | 2.072 | 0.000 | 1.573 | 2.731 |
Having a debilitating chronic disease/condition | ||||
No (Ref.) | ||||
Yes | 1.212 | 0.004 | 1.063 | 1.383 |
Area of residence | ||||
Rural (Ref.) | ||||
Urban | 1.267 | 0.000 | 1.128 | 1.423 |
Living in a Covid-19 risk zones (as of March 2020) | ||||
Green (Ref.) | ||||
Orange | 1.550 | 0.000 | 1.242 | 1.935 |
Red | 1.284 | 0.019 | 1.043 | 1.581 |
Exposed to the ‘Fit from Home’ (FFH) campaign | ||||
Yes (Ref.) | ||||
No | 1.087 | 0.184 | 0.961 | 1.229 |
Adversely affected by Covid-19 pandemic | ||||
No (Ref.) | ||||
Yes | 1.027 | 0.752 | 0.872 | 1.209 |
Having sufficient MVPA | ||||
Yes (Ref.) | ||||
No | 1.080 | 0.173 | 0.967 | 1.208 |
Constant | 0.501 | 0.000 | ||
df | 16 | |||
−2 Log Likelihood | 7623.676 | |||
Cox and Snell R2 | 0.037 | |||
Nagelkerke R2 | 0.052 | |||
Model Chi-square | 241.296 | 0.000 | ||
Number of observations | 6531 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katewongsa, P.; Potharin, D.; Rasri, N.; Palakai, R.; Widyastari, D.A. The Effect of Containment Measures during the Covid-19 Pandemic to Sedentary Behavior of Thai Adults: Evidence from Thailand’s Surveillance on Physical Activity 2019–2020. Int. J. Environ. Res. Public Health 2021, 18, 4467. https://doi.org/10.3390/ijerph18094467
Katewongsa P, Potharin D, Rasri N, Palakai R, Widyastari DA. The Effect of Containment Measures during the Covid-19 Pandemic to Sedentary Behavior of Thai Adults: Evidence from Thailand’s Surveillance on Physical Activity 2019–2020. International Journal of Environmental Research and Public Health. 2021; 18(9):4467. https://doi.org/10.3390/ijerph18094467
Chicago/Turabian StyleKatewongsa, Piyawat, Danusorn Potharin, Niramon Rasri, Rungrat Palakai, and Dyah Anantalia Widyastari. 2021. "The Effect of Containment Measures during the Covid-19 Pandemic to Sedentary Behavior of Thai Adults: Evidence from Thailand’s Surveillance on Physical Activity 2019–2020" International Journal of Environmental Research and Public Health 18, no. 9: 4467. https://doi.org/10.3390/ijerph18094467
APA StyleKatewongsa, P., Potharin, D., Rasri, N., Palakai, R., & Widyastari, D. A. (2021). The Effect of Containment Measures during the Covid-19 Pandemic to Sedentary Behavior of Thai Adults: Evidence from Thailand’s Surveillance on Physical Activity 2019–2020. International Journal of Environmental Research and Public Health, 18(9), 4467. https://doi.org/10.3390/ijerph18094467