Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review
Abstract
1. Introduction
- i.
- To explore current clinical evidence and identify genetic and biological factors that may clarify the relationship between the degenerative processes in dementia and osteoporosis.
- ii.
- To explore the potential mechanisms and biological pathways by which these genetic and biological factors may mediate the relationship between dementia and osteoporosis.
2. Materials and Methods
2.1. Eligibility
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.4. Data Charting
2.5. Data Analysis or Summary
3. Results
4. Discussion
4.1. Biomarkers with Known Link with or Predictive of Dementia
4.1.1. Apolipoprotein E (APOE)
4.1.2. Endogenous Aβ and Amyloid Precursor Protein (APP)
4.1.3. DKK1
4.2. Biomarkers with Bone and Brain Tissue-Autonomous Effects
4.2.1. OPG and TRAIL
4.2.2. Osteocyte-Derived and Brain-Derived Extracellular Vesicles
4.2.3. Parathyroid Hormone
4.2.4. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) R47H
4.2.5. ARHGEF15 Mutations
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zissimopoulos, J.; Crimmins, E.; St Clair, P. The Value of Delaying Alzheimer’s Disease Onset. Forum Health Econ. Policy 2014, 18, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Ortendahl, J.D.; Vanderpuye-Orgle, J.; Grauer, A.; Arellano, J.; Lemay, J.; Harmon, A.L.; Broder, M.S.; Singer, A.J. Healthcare Policy Changes in Osteoporosis Can Improve Outcomes and Reduce Costs in the United States. JBMR Plus 2019, 3, e10192. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.L.; Cook, M.N.; Arrighi, H.M.; Bullock, R. Hip fracture risk and subsequent mortality among Alzheimer’s disease patients in the United Kingdom, 1988–2007. Age Ageing 2011, 40, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.M.; Menzies, I.B.; Bukata, S.V.; Mendelson, D.A.; Kates, S.L. Dementia and hip fractures: Development of a pathogenic framework for understanding and studying risk. Geriatr. Orthop. Surg. Rehabil. 2010, 1, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Bove, R.; Secor, E.; Chibnik, L.B.; Barnes, L.L.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 2014, 82, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Seshadri, S.; Beiser, A.; Zhang, Y.; Felson, D.; Hannan, M.T.; Au, R.; Wolf, P.A.; Kiel, D.P. Bone mineral density and the risk of Alzheimer disease. Arch. Neurol. 2005, 62, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Littlejohns, T.J.; Henley, W.E.; Lang, I.A.; Annweiler, C.; Beauchet, O.; Chaves, P.H.; Fried, L.; Kestenbaum, B.R.; Kuller, L.H.; Langa, K.M.; et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014, 83, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Elkattawy, H.A.; Ghoneim, F.M.; Eladl, M.A.; Said, E.; Ebrahim, H.A.; El-Shafey, M.; Asseri, S.M.; El-Sherbiny, M.; Alsalamah, R.H.; Elsherbiny, N.M.; et al. Vitamin K2 (Menaquinone-7) Reverses Age-Related Structural and Cognitive Deterioration in Naturally Aging Rats. Antioxidants 2022, 11, 514. [Google Scholar] [CrossRef] [PubMed]
- Pluijm, S.M.; Dik, M.G.; Jonker, C.; Deeg, D.J.; van Kamp, G.J.; Lips, P. Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos. Int. 2002, 13, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, T.; Chen, J.; Fang, Y.; Zeng, C. Endogenous Aβ induces osteoporosis through an mTOR-dependent inhibition of autophagy in bone marrow mesenchymal stem cells (BMSCs). Ann. Transl. Med. 2021, 9, 1794. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.L.; Tucker, K.L.; Chen, H.; Hannan, M.T.; Gagnon, D.R.; Cupples, L.A.; Wilson, P.W.; Ordovas, J.; Schaefer, E.J.; Dawson-Hughes, B.; et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am. J. Clin. Nutr. 2000, 71, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Zmuda, J.M.; Yaffe, K.; Kuller, L.H.; Ferrell, R.E.; Wisniewski, S.R.; Cummings, S.R. Apolipoprotein E polymorphism: A new genetic marker of hip fracture risk--The Study of Osteoporotic Fractures. J. Bone Miner. Res. 1999, 14, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Dick, I.M.; Devine, A.; Marangou, A.; Dhaliwal, S.S.; Laws, S.; Martins, R.N.; Prince, R.L. Apolipoprotein E4 is associated with reduced calcaneal quantitative ultrasound measurements and bone mineral density in elderly women. Bone 2002, 31, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Efstathiadou, Z.; Koukoulis, G.; Stakias, N.; Challa, A.; Tsatsoulis, A. Apolipoprotein E polymorphism is not associated with spinal bone mineral density in peri- and postmenopausal Greek women. Maturitas 2004, 48, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, A.M.; Kröger, H.; Niskanen, L.; Komulainen, M.H.; Ryynänen, M.; Parviainen, M.T.; Tuppurainen, M.T.; Honkanen, R.; Saarikoski, S. Does apolipoprotein E genotype relate to BMD and bone markers in postmenopausal women? Maturitas 2000, 34, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.M.; Cauley, J.A.; Ganguli, M. APOE 4 and hip fracture risk in a community-based study of older adults. J. Am. Geriatr. Soc. 1999, 47, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, M.; Saupe, J.; Schaefer, K.; Asmus, G. Bone fracture history and prospective bone fracture risk of hemodialysis patients are related to apolipoprotein E genotype. Calcif. Tissue Int. 1998, 62, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Schoofs, M.W.; van der Klift, M.; Hofman, A.; van Duijn, C.M.; Stricker, B.H.; Pols, H.A.; Uitterlinden, A.G. ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: The Rotterdam study. J. Bone Miner. Res. 2004, 19, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, M.; Shiraki, Y.; Aoki, C.; Hosoi, T.; Inoue, S.; Kaneki, M.; Ouchi, Y. Association of bone mineral density with apolipoprotein E phenotype. J. Bone Miner. Res. 1997, 12, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.S.; Rochette, N.F.; Pedrosa, D.F.; Magnago, R.P.L.; Filho, T.B.F.; Vieira, F.L.H.; Fin, I.D.C.F.; Eis, S.R.; Graceli, J.B.; Rangel, L.B.; et al. Role of APOE Gene in Bone Mineral Density and Incidence of Bone Fractures in Brazilian Postmenopausal Women. J. Clin. Densitom. 2018, 21, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Braverman, E.R.; Chen, T.J.; Chen, A.L.; Arcuri, V.; Kerner, M.M.; Bajaj, A.; Carbajal, J.; Braverman, D.; Downs, B.W.; Blum, K. Age-related increases in parathyroid hormone may be antecedent to both osteoporosis and dementia. BMC Endocr. Disord. 2009, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, E.; Peros, E.; Scioli, G.A.; D’Angelo, A.; Olivieri, C.; Montagna, L.; Geroldi, D. Plasma osteoprotegerin as a biochemical marker for vascular dementia and Alzheimer’s disease. Int. J. Mol. Med. 2004, 13, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, C.; Jiang, Y.; Wan, M.; Jiao, B.; Liao, X.; Rao, S.; Hong, C.; Yang, Q.; Zhu, Y.; et al. Brain-derived extracellular vesicles promote bone-fat imbalance in Alzheimer’s disease. Int. J. Biol. Sci. 2023, 19, 2409–2427. [Google Scholar] [CrossRef] [PubMed]
- Luckhaus, C.; Mahabadi, B.; Grass-Kapanke, B.; Jänner, M.; Willenberg, H.; Jäger, M.; Supprian, T.; Fehsel, K. Blood biomarkers of osteoporosis in mild cognitive impairment and Alzheimer’s disease. J. Neural Transm. 2009, 116, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, Y.; Xu, J.; Liu, X.; Wang, Y.; Deng, Y.; Wang, G.; Xu, W.; Ren, R.; Liu, X.; et al. Association study of TREM2 polymorphism rs75932628 with late-onset Alzheimer’s disease in Chinese Han population. Neurol. Res. 2014, 36, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Cao, J.; Wu, C.; Huang, F.; Wu, P.; Lang, J.; Liu, Y. Osteoporosis is associated with elevated baseline cerebrospinal fluid biomarkers and accelerated brain structural atrophy among older people. Front. Aging Neurosci. 2022, 14, 958050. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.D.; Shah, R.C.; Leurgans, S.; Bottiglieri, T.; Wilson, R.S.; Sumner, D.R. Circulating Dkk1 and TRAIL Are Associated With Cognitive Decline in Community-Dwelling, Older Adults With Cognitive Concerns. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Stapledon, C.J.M.; Stamenkov, R.; Cappai, R.; Clark, J.M.; Bourke, A.; Bogdan Solomon, L.; Atkins, G.J. Relationships between the Bone Expression of Alzheimer’s Disease-Related Genes, Bone Remodelling Genes and Cortical Bone Structure in Neck of Femur Fracture. Calcif. Tissue Int. 2021, 108, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Stefanidou, M.; O’Donnell, A.; Himali, J.J.; DeCarli, C.; Satizabal, C.; Beiser, A.S.; Seshadri, S.; Zaldy, T. Bone Mineral Density Measurements and Association With Brain Structure and Cognitive Function: The Framingham Offspring Cohort. Alzheimer Dis. Assoc. Disord. 2021, 35, 291–297. [Google Scholar] [CrossRef] [PubMed]
- von Mühlen, D.G.; Barrett-Connor, E.; Schneider, D.L.; Morin, P.A.; Parry, P. Osteoporosis and apolipoprotein E genotype in older adults: The Rancho Bernardo study. Osteoporos. Int. 2001, 12, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Lau, E.M.; Li, M.; Chung, T.; Sham, A.; Woo, J. The prevalence of Apo E4 genotype and its relationship to bone mineral density in Hong Kong Chinese. J. Bone Miner. Metab. 2005, 23, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, Y.; Chen, G.; Li, J.; Wang, B.; Lu, X. Potential association of bone mineral density loss with cognitive impairment and central and peripheral amyloid-β changes: A cross-sectional study. BMC Musculoskelet. Disord. 2022, 23, 626. [Google Scholar] [CrossRef] [PubMed]
- Hauser, P.S.; Narayanaswami, V.; Ryan, R.O. Apolipoprotein E: From lipid transport to neurobiology. Prog. Lipid Res. 2011, 50, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 2014, 72 Pt A, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Li, J.; Zhang, Y.; Chen, J. Meta-Analysis of the Relationship between the APOE Gene and the Onset of Parkinson’s Disease Dementia. Park. Dis. 2018, 2018, 9497147. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.S.; Pericak-Vance, M.; Joo, S.; Rosi, B.; Gusella, J.; Crapper-MacLachlan, D.; Alberts, M.; et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Peter, I.; Crosier, M.D.; Yoshida, M.; Booth, S.L.; Cupples, L.A.; Dawson-Hughes, B.; Karasik, D.; Kiel, D.P.; Ordovas, J.M.; Trikalinos, T.A. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: A meta-analysis. Osteoporos Int. 2011, 22, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.A.; Norgren, S.; Ravid, R.; Wasco, W.; Winblad, B.; Lannfelt, L.; Cowburn, R.F. Quantification of APP and APLP2 mRNA in APOE genotyped Alzheimer’s disease brains. Brain Res. Mol. Brain Res. 1996, 43, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013, 126, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: Evidence that an initially deposited species is A beta 42(43). Neuron 1994, 13, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, B.; Zhang, L.; Rong, L. Amyloid beta peptide is elevated in osteoporotic bone tissues and enhances osteoclast function. Bone 2014, 61, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Fandos, N.; Pérez-Grijalba, V.; Pesini, P.; Olmos, S.; Bossa, M.; Villemagne, V.L.; Doecke, J.; Fowler, C.; Masters, C.L.; Sarasa, M. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement. 2017, 8, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Attia, J.; D’Este, C.; Yu, X.H.; Wu, X.G. A risk score predicted coronary heart disease and stroke in a Chinese cohort. J. Clin. Epidemiol. 2005, 58, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Xiong, F.; Hong, Y.; Jung, J.U.; Li, X.S.; Liu, J.Z.; Yan, R.; Mei, L.; Feng, X.; Xiong, W.C. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner. J. Bone Miner. Res. 2011, 26, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hao, S.; Yang, B.; Fan, Y.; Qin, X.; Chen, Y.; Hu, J. Wnt/β-catenin signaling plays an essential role in α7 nicotinic receptor-mediated neuroprotection of dopaminergic neurons in a mouse Parkinson’s disease model. Biochem. Pharmacol. 2017, 140, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Slee, R.B.; Fukai, N.; Rawadi, G.; Roman-Roman, S.; Reginato, A.M.; Wang, H.; Cundy, T.; Glorieux, F.H.; Lev, D.; et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Little, R.D.; Carulli, J.P.; Del Mastro, R.G.; Dupuis, J.; Osborne, M.; Folz, C.; Manning, S.P.; Swain, P.M.; Zhao, S.C.; Eustace, B.; et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 2002, 70, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Vallée, J.N.; Guillevin, R.; Lecarpentier, Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol. Neurobiol. 2018, 38, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Huang, H.; Guan, X.; Fiesler, V.; Bhuiyan, M.I.H.; Liu, R.; Jalali, S.; Hasan, N.; Tai, A.K.; Chattopadhyay, A.; et al. Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog. Neurobiol. 2021, 199, 101963. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.Y.; Fuenzalida, M.; Inestrosa, N.C. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J. Neurosci. 2014, 34, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Purro, S.A.; Dickins, E.M.; Salinas, P.C. The secreted Wnt antagonist Dickkopf-1 is required for amyloid β-mediated synaptic loss. J. Neurosci. 2012, 32, 3492–3498. [Google Scholar] [CrossRef] [PubMed]
- De Ferrari, G.V.; Chacón, M.A.; Barría, M.I.; Garrido, J.L.; Godoy, J.A.; Olivares, G.; Reyes, A.E.; Alvarez, A.; Bronfman, M.; Inestrosa, N.C. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol. Psychiatry 2003, 8, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Tay, L.; Leung, B.; Yeo, A.; Chan, M.; Lim, W.S. Elevations in Serum Dickkopf-1 and Disease Progression in Community-Dwelling Older Adults With Mild Cognitive Impairment and Mild-to-Moderate Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, L.; Lewiecki, E.M.; Bilezikian, J.P. Romosozumab for the treatment of osteoporosis. Expert. Opin. Biol. Ther. 2017, 17, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Pedrini, S.; Thota, R.; Doecke, J.; Chatterjee, P.; Sohrabi, H.R.; Teunissen, C.E.; Verberk, I.M.W.; Stoops, E.; Vanderstichele, H.; et al. Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults. NPJ Aging 2023, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, S.; Shimamoto, K. Wnt/β-catenin pathway as a potential target for Parkinson’s disease: A cohort study of romosozumab using routinely collected health data in Japan. Front. Pharmacol. 2024, 15, 1411285. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Shen, S.; Shi, Y.; Wang, Q.; Zhang, G.; Lin, J.; Chen, J.; Bai, F.; Zhang, L.; Wang, Y.; et al. Osteocyte-derived sclerostin impairs cognitive function during ageing and Alzheimer’s disease progression. Nat. Metab. 2024, 6, 531–549. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther. 2007, 9 (Suppl. S1), S1. [Google Scholar] [CrossRef] [PubMed]
- Veshnavei, H.A. Evaluation of the serum level of osteoprotegerin and bone mineral density in postmenopausal women. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 10–15. [Google Scholar] [PubMed]
- Schoppet, M.; Al-Fakhri, N.; Franke, F.E.; Katz, N.; Barth, P.J.; Maisch, B.; Preissner, K.T.; Hofbauer, L.C. Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Mönckeberg’s sclerosis and atherosclerosis. J. Clin. Endocrinol. Metab. 2004, 89, 4104–4112. [Google Scholar] [CrossRef] [PubMed]
- Cottin, Y.; Issa, R.; Benalia, M.; Mouhat, B.; Meloux, A.; Tribouillard, L.; Bichat, F.; Rochette, L.; Vergely, C.; Zeller, M. Association between Serum Osteoprotegerin Levels and Severity of Coronary Artery Disease in Patients with Acute Myocardial Infarction. J. Clin. Med. 2021, 10, 4326. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhao, J.; Yan, Y.; Liu, J.; Zang, J.; Zhang, Y.; Ruan, K.; Xu, H.; He, W. Plasma osteoprotegerin predicts adverse cardiovascular events in stable coronary artery disease: The PEACE trial. Front. Cardiovasc. Med. 2023, 10, 1178153. [Google Scholar] [CrossRef] [PubMed]
- Forde, H.; Davenport, C.; Harper, E.; Cummins, P.; Smith, D. The role of OPG/RANKL in the pathogenesis of diabetic cardiovascular disease. Cardiovasc. Endocrinol. Metab. 2018, 7, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.L.; Hayashi, S.; Bjällmark, A.; Larsson, M.; Riella, M.; Olandoski, M.; Lindholm, B.; Nascimento, M.M. Osteoprotegerin is a marker of cardiovascular mortality in patients with chronic kidney disease stages 3-5. Sci. Rep. 2021, 11, 2473. [Google Scholar] [CrossRef] [PubMed]
- Guañabens, N.; Enjuanes, A.; Alvarez, L.; Peris, P.; Caballería, L.; Jesús Martínez de Osaba, M.; Cerdá, D.; Monegal, A.; Pons, F.; Parés, A. High osteoprotegerin serum levels in primary biliary cirrhosis are associated with disease severity but not with the mRNA gene expression in liver tissue. J. Bone Miner. Metab. 2009, 27, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Fahrleitner-Pammer, A.; Dobnig, H.; Piswanger-Soelkner, C.; Bonelli, C.; Dimai, H.P.; Leb, G.; Obermayer-Pietsch, B. Osteoprotegerin serum levels in women: Correlation with age, bone mass, bone turnover and fracture status. Wien. Klin. Wochenschr. 2003, 115, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, Z.; Ziora, K.; Oświęcimska, J.; Marek, B.; Świętochowska, E.; Kajdaniuk, D.; Strzelczyk, J.; Cieślicka, A.; Wołkowska-Pokrywa, K.; Kos-Kudła, B. Selected pro-inflammatory cytokines, bone metabolism, osteoprotegerin, and receptor activator of nuclear factor-kB ligand in girls with anorexia nervosa. Endokrynol. Pol. 2015, 66, 313–321. [Google Scholar] [CrossRef] [PubMed]
- van Tuyl, L.H.; Voskuyl, A.E.; Boers, M.; Geusens, P.; Landewé, R.B.; Dijkmans, B.A.; Lems, W.F. Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Kichev, A.; Rousset, C.I.; Baburamani, A.A.; Levison, S.W.; Wood, T.L.; Gressens, P.; Thornton, C.; Hagberg, H. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J. Biol. Chem. 2014, 289, 9430–9439. [Google Scholar] [CrossRef] [PubMed]
- Vitovski, S.; Phillips, J.S.; Sayers, J.; Croucher, P.I. Investigating the interaction between osteoprotegerin and receptor activator of NF-kappaB or tumor necrosis factor-related apoptosis-inducing ligand: Evidence for a pivotal role for osteoprotegerin in regulating two distinct pathways. J. Biol. Chem. 2007, 282, 31601–31609. [Google Scholar] [CrossRef] [PubMed]
- Zauli, G.; Rimondi, E.; Nicolin, V.; Melloni, E.; Celeghini, C.; Secchiero, P. TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 2004, 104, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Haden, S.T.; Brown, E.M.; Hurwitz, S.; Scott, J.; El-Hajj Fuleihan, G. The effects of age and gender on parathyroid hormone dynamics. Clin. Endocrinol. 2000, 52, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Steingrimsdottir, L.; Gunnarsson, O.; Indridason, O.S.; Franzson, L.; Sigurdsson, G. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 2005, 294, 2336–2341. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Zhao, D.; Schneider, A.L.C.; Korada, S.K.; Lutsey, P.L.; Guallar, E.; Alonso, A.; Windham, B.G.; Gottesman, R.F.; Michos, E.D. Association of parathyroid hormone with 20-year cognitive decline: The ARIC study. Neurology 2017, 89, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.; Younkin, S.; et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013, 368, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 2013, 368, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Carrasquillo, M.M.; Benitez, B.A.; Skorupa, T.; Carrell, D.; Patel, D.; Lincoln, S.; Krishnan, S.; Kachadoorian, M.; Reitz, C.; et al. TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol. Neurodegener. 2015, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.K.; Hung, C.M.; Lin, S.H.; Tai, Y.-C.; Lu, K.; Liliang, P.-C.; Lin, C.-W.; Lee, Y.-C.; Fang, P.-H.; Chang, L.-C.; et al. Increased risk of hip fractures in patients with dementia: A nationwide population-based study. BMC Neurol. 2014, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.T.; Jiang, T.; Wang, Y.L.; Wang, H.-F.; Zhang, W.; Hu, N.; Tan, L.; Sun, L.; Tan, M.-S.; Zhu, X.-C.; et al. Triggering receptor expressed on myeloid cells 2 variant is rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol. Aging 2014, 35, 937.e1–937.e3. [Google Scholar] [CrossRef] [PubMed]
- Sell, G.L.; Schaffer, T.B.; Margolis, S.S. Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice. J. Clin. Investig. 2017, 127, 1646–1650. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Chen, Y.; Guo, C.; Fu, Y.; Qin, C.; Zhu, Q.; Wang, J.; Zhang, R.; Tian, H.; Feng, R.; et al. Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture. Acta Neuropathol. 2023, 145, 681–705. [Google Scholar] [CrossRef] [PubMed]
Biomarker of Gene | Association with Dementia | Association with Osteoporosis |
---|---|---|
APOE4 | + | inconsistent |
OPG | - | + |
OPG/RANKL ratio | - | + |
TRAIL | inconsistent | inconsistent |
TREM2 mutations | inconsistent | - |
PTH | - | + |
ARHGEF15 | inconsistent | - |
DKK1 | + | + |
Sclerostin | + | + |
Amyloid β | + | + |
OPG/Trail ratio | + | + |
Study | Total Study Participants | Association with BMD/Osteoporosis/Fracture |
---|---|---|
Booth [11] | 888 | No |
Cauley [12] | 1750 | Yes |
Dick [13] | 1332 | Yes |
Efstathiadou [14] | 147 | No |
Heikkinen [15] | 352 | No |
Johnston [16] | 899 | Yes |
Kohlmeier [17] | 219 | Yes |
Pluijm [9] | 604 | No |
Schoofs [18] | 5857 | No |
Shiraki [19] | 284 | Yes |
Souza [20] | 529 | Yes |
Wong [22] | 692 | No |
von Mühlen [23] | 596 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunwale, A.N.; Schulz, P.E.; des Bordes, J.K.; Elefteriou, F.; Rianon, N.J. Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review. Geriatrics 2025, 10, 96. https://doi.org/10.3390/geriatrics10040096
Ogunwale AN, Schulz PE, des Bordes JK, Elefteriou F, Rianon NJ. Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review. Geriatrics. 2025; 10(4):96. https://doi.org/10.3390/geriatrics10040096
Chicago/Turabian StyleOgunwale, Abayomi N., Paul E. Schulz, Jude K. des Bordes, Florent Elefteriou, and Nahid J. Rianon. 2025. "Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review" Geriatrics 10, no. 4: 96. https://doi.org/10.3390/geriatrics10040096
APA StyleOgunwale, A. N., Schulz, P. E., des Bordes, J. K., Elefteriou, F., & Rianon, N. J. (2025). Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review. Geriatrics, 10(4), 96. https://doi.org/10.3390/geriatrics10040096