What Accounts for the Factors of Psychopathology? An Investigation of the Neurocognitive Correlates of Internalising, Externalising, and the p-Factor
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.3. Materials
2.3.1. Substance Use and Symptomology
2.3.2. Neurocognitive Abilities
Working Memory
Shifting
Inhibition
Speed of Processing
2.4. Analysis
3. Results
3.1. Step-One
3.2. Step-Two
3.3. Step-Three
3.4. Step-Four
3.5. Step-Five
4. Discussion
Limitations of the Research and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Salthouse, T.A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McTeague, L.M.; Goodkind, M.S.; Etkin, A. Transdiagnostic impairment of cognitive control in mental illness. J. Psychiatr. Res. 2016, 83, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T.; Rector, N.A. Cognitive approaches to schizophrenia: Theory and therapy. Annu. Rev. Clin. Psychol. 2005, 1, 577–606. [Google Scholar] [CrossRef] [PubMed]
- Romer, A.L.; Pizzagalli, D.A. Is executive dysfunction a risk marker or consequence of psychopathology? A test of executive function as a prospective predictor and outcome of general psychopathology in the adolescent brain cognitive development study®. Dev. Cogn. Neurosci. 2021, 51, 100994. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, W.A.; Zelazo, P.D.; Packer, D.J.; Van Bavel, J.J. The iterative reprocessing model: A multilevel framework for attitudes and evaluation. Soc. Cogn. 2007, 25, 736–760. [Google Scholar] [CrossRef]
- Zelazo, P.D. Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Dev. Rev. 2015, 38, 55–68. [Google Scholar] [CrossRef]
- Haywood, D.; Baughman, F.D. Multidimensionality in Executive Function Profiles in Schizophrenia: A Computational Approach Using the Wisconsin Card Sorting Task. Comput. Brain Behav. 2021, 4, 381–394. [Google Scholar] [CrossRef]
- Martino, D.J.; Strejilevich, S.A.; Scápola, M.; Igoa, A.; Marengo, E.; Ais, E.D.; Perinot, L. Heterogeneity in cognitive functioning among patients with bipolar disorder. J. Affect. Disord. 2008, 109, 149–156. [Google Scholar] [CrossRef]
- Raffard, S.; Bayard, S. Understanding the executive functioning heterogeneity in schizophrenia. Brain Cogn. 2012, 79, 60–69. [Google Scholar] [CrossRef]
- Moritz, S.; Birkner, C.; Kloss, M.; Jahn, H.; Hand, I.; Haasen, C.; Krausz, M. Executive functioning in obsessive–compulsive disorder, unipolar depression, and schizophrenia. Arch. Clin. Neuropsychol. 2002, 17, 477–483. [Google Scholar]
- Haywood, D.; Baughman, F.D.; Mullan, B.A.; Heslop, K.R. Psychopathology and Neurocognition in the Era of the p-Factor: The Current Landscape and the Road Forward. Psychiatry Int. 2021, 2, 233–249. [Google Scholar] [CrossRef]
- Hovenkamp-Hermelink, J.H.M.; Riese, H.; van der Veen, D.; Batelaan, N.M.; Penninx, B.W.J.H.; Schoevers, R.A. Low stability of diagnostic classifications of anxiety disorders over time: A six-year follow-up of the NESDA study. J. Affect. Disord. 2016, 190, 310–315. [Google Scholar] [CrossRef]
- Newman, D.L.; Moffitt, T.E.; Caspi, A.; Silva, P.A. Comorbid mental disorders: Implications for treatment and sample selection. J. Abnorm. Psychol. 1998, 107, 305. [Google Scholar] [CrossRef]
- Fried, E.I.; Coomans, F.; Lorenzo-Luaces, L. The 341 737 ways of qualifying for the melancholic specifier. Lancet Psychiatry 2020, 7, 479–480. [Google Scholar] [CrossRef]
- Fried, E.I. Studying mental disorders as systems, not syndromes. psyarxiv 2021. [Google Scholar] [CrossRef]
- Haywood, D.; Baughman, F.; Mullan, B.; Heslop, K.R. Going “Up” to Move Forward: S-1 Bifactor Models and the Study of Neurocognitive Abilities in Psychopathology. Int. J. Environ. Res. Public Health 2021, 18, 7413. [Google Scholar] [CrossRef]
- Kotov, R.; Krueger, R.F.; Watson, D.; Achenbach, T.M.; Althoff, R.R.; Bagby, R.M.; Brown, T.A.; Carpenter, W.T.; Caspi, A.; Clark, L.A.; et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J. Abnorm. Psychol. 2017, 126, 454–477. [Google Scholar] [CrossRef] [Green Version]
- Kotov, R.; Krueger, R.F.; Watson, D.; Cicero, D.C.; Conway, C.C.; DeYoung, C.G.; Eaton, N.R.; Forbes, M.K.; Hallquist, M.N.; Latzman, R.D.; et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A Quantitative Nosology Based on Consensus of Evidence. Annu. Rev. Clin. Psychol. 2021, 17, 83–108. [Google Scholar] [CrossRef]
- Caspi, A.; Houts, R.M.; Belsky, D.W.; Goldman-Mellor, S.J.; Harrington, H.; Israel, S.; Meier, M.H.; Ramrakha, S.; Shalev, I.; Poulton, R. The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2014, 2, 119–137. [Google Scholar] [CrossRef]
- Fried, E.I.; Greene, A.L.; Eaton, N.R. The p factor is the sum of its parts, for now. World Psychiatry 2021, 20, 69–70. [Google Scholar] [CrossRef]
- Haywood, D.; Baughman, F.D.; Mullan, B.A.; Heslop, K.R. One p-Factor for All? Exploring the Applicability of Structural Models of Psychopathology within Subgroups of a Population. Int. J. Environ. Res. Public Health 2021, 18, 7108. [Google Scholar] [CrossRef]
- Martel, M.M.; Pan, P.M.; Hoffmann, M.S.; Gadelha, A.; do Rosário, M.C.; Mari, J.J.; Manfro, G.G.; Miguel, E.C.; Paus, T.; Bressan, R.A.; et al. A general psychopathology factor (P factor) in children: Structural model analysis and external validation through familial risk and child global executive function. J. Abnorm. Psychol. 2017, 126, 137–148. [Google Scholar] [CrossRef]
- Eadeh, H.-M.; Markon, K.E.; Nigg, J.T.; Nikolas, M.A. Evaluating the Viability of Neurocognition as a Transdiagnostic Construct Using Both Latent Variable Models and Network Analysis. Res. Child Adolesc. Psychopathol. 2021, 49, 697–710. [Google Scholar] [CrossRef]
- WHO. The alcohol, smoking and substance involvement screening test (ASSIST): Development, reliability and feasibility. Addiction 2002, 97, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Derogatis, L.R.; Melisaratos, N. The brief symptom inventory: An introductory report. Psychol. Med. 1983, 13, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.P.; Dayan, E.; Censor, N.; Cohen, L.G. Crowdsourcing in cognitive and systems neuroscience. Neuroscientist 2021. [Google Scholar] [CrossRef]
- Crump, M.J.C.; McDonnell, J.V.; Gureckis, T.M. Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLoS ONE 2013, 8, e57410. [Google Scholar] [CrossRef] [Green Version]
- Merz, Z.C.; Lace, J.W.; Eisenstein, A.M. Examining broad intellectual abilities obtained within an mTurk internet sample. Curr. Psychol. 2020, 1–9. [Google Scholar] [CrossRef]
- Sauter, M.; Draschkow, D.; Mack, W. Building, Hosting and Recruiting: A Brief Introduction to Running Behavioral Experiments Online. Brain Sci. 2020, 10, 251. [Google Scholar] [CrossRef]
- Uittenhove, K.; Jeanneret, S.; Vergauwe, E. From lab-based to web-based behavioural research: Who you test is more important than how you test. psyarxiv 2022. [Google Scholar] [CrossRef]
- Akhavan Abiri, F.; Shairi, M.R. Validity and Reliability of Symptom Checklist-90-Revised (SCL-90-R) and Brief Symptom Inventory-53 (BSI-53). Clin. Psychol. Personal. 2020, 17, 169–195. [Google Scholar]
- Vandierendonck, A. A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behav. Res. Methods 2017, 49, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N.; Fristoe, N.M.; Elliott, E.M.; Brunner, R.P.; Saults, J.S. Scope of attention, control of attention, and intelligence in children and adults. Mem. Cogn. 2006, 34, 1754–1768. [Google Scholar] [CrossRef]
- Wilson, R.C.; Niv, Y. Inferring relevance in a changing world. Front. Hum. Neurosci. 2012, 5, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimberg, D.Y.; Aguirre, G.K.; D’Esposito, M. Modulation of task-related neural activity in task-switching: An fMRI study. Cogn. Brain Res. 2000, 10, 189–196. [Google Scholar] [CrossRef]
- Wilson, K.M.; Finkbeiner, K.M.; De Joux, N.R.; Russell, P.N.; Helton, W.S. Go-stimuli proportion influences response strategy in a sustained attention to response task. Exp. Brain Res. 2016, 234, 2989–2998. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Chelune, G.J.; Talley, J.L.; Kay, G.G.; Curtiss, G. Wisconsin Card Sorting Test Manual Psychological Assessment Resources. Incl Odessa 1981, 521. [Google Scholar]
- Mackintosh, N.J. Selective attention in animal discrimination learning. Psychol. Bull. 1965, 64, 124. [Google Scholar] [CrossRef]
- MacLeod, C.M. The Stroop task: The ”gold standard” of attentional measures. J. Exp. Psychol. Gen. 1992, 121, 12. [Google Scholar] [CrossRef]
- Nosek, B.A.; Banaji, M.R. The go/no-go association task. Soc. Cogn. 2001, 19, 625–666. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Reid, C.; Nelson, J. Developmental changes in inspection time: What a difference a year makes. Intelligence 2001, 29, 475–486. [Google Scholar] [CrossRef]
- Schwannauer, M.; Chetwynd, P. The Brief Symptom Inventory: A validity study in two independent Scottish samples. Clin. Psychol. Psychother. Int. J. Theory Pract. 2007, 14, 221–228. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A.; DiStefano, C. The relationship between the standardized root mean square residual and model misspecification in factor analysis models. Multivar. Behav. Res. 2018, 53, 676–694. [Google Scholar] [CrossRef]
- Greene, A.L.; Eaton, N.R.; Li, K.; Forbes, M.K.; Krueger, R.F.; Markon, K.E.; Waldman, I.D.; Cicero, D.C.; Conway, C.C.; Docherty, A.R.; et al. Are fit indices used to test psychopathology structure biased? A simulation study. J. Abnorm. Psychol. 2019, 128, 740–764. [Google Scholar] [CrossRef]
- Greene, A.L.; Watts, A.L.; Forbes, M.K.; Kotov, R.; Krueger, R.; Eaton, N. Misbegotten Methodologies and Forgotten Lessons from Tom Swift’s Electric Factor Analysis Machine: A Demonstration with Competing Structural Models of Psychopathology. Psychol. Methods 2022. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods Res. 1992, 21, 230–258. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Caspi, A.; Moffitt, T.E. All for one and one for all: Mental disorders in one dimension. Am. J. Psychiatry 2018, 175, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Lahey, B.B.; Applegate, B.; Hakes, J.K.; Zald, D.H.; Hariri, A.R.; Rathouz, P.J. Is there a general factor of prevalent psychopathology during adulthood? J. Abnorm. Psychol. 2012, 121, 971. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.L.; Poore, H.E.; Waldman, I.D. Riskier tests of the validity of the bifactor model of psychopathology. Clin. Psychol. Sci. 2019, 7, 1285–1303. [Google Scholar] [CrossRef]
- Eid, M. Multi-faceted constructs in abnormal psychology: Implications of the bifactor S-1 model for individual clinical assessment. J. Abnorm. Child Psychol. 2020, 48, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M.; Geiser, C.; Zagorscak, P.; Burns, G.L.; Bohn, J.; Becker, S.P.; Eid, M.; Beauchaine, T.P.; Knaevelsrud, C. On the meaning of the general factor of psychopathology (“P-Factor”) in symmetrical bifactor models. psyarxiv 2020. [Google Scholar] [CrossRef]
- Karr, J.E.; Areshenkoff, C.N.; Rast, P.; Hofer, S.M.; Iverson, G.L.; Garcia-Barrera, M.A. The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychol. Bull. 2018, 144, 1147–1185. [Google Scholar] [CrossRef]
- Kail, R. Development of processing speed in childhood and adolescence. Adv. Child Dev. Behav. 1991, 23, 151–185. [Google Scholar] [PubMed]
- Albinet, C.T.; Boucard, G.; Bouquet, C.A.; Audiffren, M. Processing speed and executive functions in cognitive aging: How to disentangle their mutual relationship? Brain Cogn. 2012, 79, 1–11. [Google Scholar] [CrossRef]
- Nuño, L.; Gómez-Benito, J.; Carmona, V.R.; Pino, O. A Systematic Review of Executive Function and Information Processing Speed in Major Depression Disorder. Brain Sci. 2021, 11, 147. [Google Scholar] [CrossRef]
- Daban, C.; Mathieu, F.; Raust, A.; Cochet, B.; Scott, J.; Etain, B.; Leboyer, M.; Bellivier, F. Is processing speed a valid cognitive endophenotype for bipolar disorder? J. Affect. Disord. 2012, 139, 98–101. [Google Scholar] [CrossRef]
- Wolinsky, F.D.; Vander Weg, M.W.; Martin, R.; Unverzagt, F.W.; Ball, K.K.; Jones, R.N.; Tennstedt, S.L. The effect of speed-of-processing training on depressive symptoms in ACTIVE. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2009, 64, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Galandra, C.; Crespi, C.; Basso, G.; Manera, M.R.; Giorgi, I.; Poggi, P.; Canessa, N. Decreased information processing speed and decision-making performance in alcohol use disorder: Combined neurostructural evidence from VBM and TBSS. Brain Imag. Behav. 2021, 15, 205–215. [Google Scholar] [CrossRef]
- Paolillo, E.W.; Inkelis, S.M.; Heaton, A.; Saloner, R.; Moore, R.C.; Moore, D.J. Age of last alcohol use disorder relates to processing speed among older adults living with HIV. Alcohol Alcohol. 2019, 54, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.C.; Gazdzinski, S.; Yeh, P.-H.; Meyerhoff, D.J. Combined Neuroimaging, Neurocognitive and Psychiatric Factors to Predict Alcohol Consumption Following Treatment for Alcohol Dependence. Alcohol Alcohol. 2008, 43, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, V.A.; Kemp, A.H.; Heard, R.; Lennings, C.J.; Hickie, I.B. Childhood-versus adolescent-onset antisocial youth with conduct disorder: Psychiatric illness, neuropsychological and psychosocial function. PLoS ONE 2015, 10, e0121627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Mean (SD/%)/Count | Min | Max | |
---|---|---|---|---|
Age | 44.47 (16.35) | 18 | 83 | |
Gender | ||||
Male | 194 (48.5%) | - | - | |
Female | 206 (51.5%) | - | - | |
Diagnosis (Yes/No) | ||||
Yes | 114 (28.5%) | - | - | |
No | 286 (71.5%) | - | - | |
Diagnoses a | ||||
Depression | 66 (16.5%) | - | - | |
Generalised Anxiety | 57 (14.2%) | - | - | |
Agoraphobia | 2 (0.5%) | - | - | |
Social Anxiety | 7 (1.8%) | - | - | |
Panic Disorder | 4 (1.0%) | - | - | |
Schizoaffective | 1 (0.3%) | - | - | |
Psychosis | 2 (0.5%) | - | - | |
Eating Disorder | 1 (0.3%) | - | - | |
Cyclothymia | 1 (0.3%) | - | - | |
Bipolar | 17 (4.3%) | - | - | |
OCD | 3 (0.8%) | - | - | |
Impulse Control | 1 (0.3%) | - | - | |
BPD | 3 (0.8%) | - | - | |
PTSD | 19 (4.8%) | - | - | |
Substance Use | 3 (0.8%) | - | - | |
Trichotillomania | 1 (0.3%) | - | - | |
Year of First Diagnosis | 2007.69 (10.71) | 1980 | 2021 | |
Admitted to a Mental Health Facility (Yes/No) | ||||
Yes | 26 (6.5%) | - | - | |
No | 374 (93.5%) | - | ||
Year of First Admission | 2003.31 (13.14) | 1980 | 2020 | |
Using Psychotropic Medication (Yes/No) | ||||
Yes | 60 (15.0%) | - | - | |
No | 340 (85.0%) | - | - |
Factor Name | Item Numbers | Original Factor | Cronbach’s Alpha |
---|---|---|---|
Depression | 0.940 | ||
17 | Depression | ||
18 | Depression | ||
16 | Depression | ||
14 | Psychoticism | ||
35 | Depression | ||
50 | Depression | ||
44 | Anxiety | ||
Agoraphobia | 0.865 | ||
8 | Phobic Anxiety | ||
43 | Phobic Anxiety | ||
28 | Phobic Anxiety | ||
31 | Phobic Anxiety | ||
45 | Anxiety | ||
Hostility | 0.832 | ||
13 | Hostility | ||
46 | Hostility | ||
41 | Hostility | ||
40 | Hostility | ||
6 | Hostility | ||
Mental Fog | 0.909 | ||
36 | Obsessive-Compulsive | ||
5 | Obsessive-Compulsive | ||
26 | Obsessive-Compulsive | ||
32 | Obsessive-Compulsive | ||
27 | Obsessive-Compulsive | ||
15 | Obsessive-Compulsive | ||
Interpersonal Anxiety | 0.904 | ||
21 | Interpersonal Sensitivity | ||
22 | Interpersonal Sensitivity | ||
51 | Paranoid Ideation | ||
20 | Interpersonal Sensitivity | ||
42 | Interpersonal Sensitivity | ||
48 | Somatisation | ||
24 | Paranoid Ideation | ||
4 | Paranoid Ideation | ||
10 | Paranoid Ideation | ||
Somatisation | 0.858 | ||
7 | Somatisation | ||
30 | Somatisation | ||
33 | Somatisation | ||
29 | Somatisation | ||
23 | Somatisation | ||
2 | Somatisation | ||
37 | Somatisation | ||
1 | Anxiety |
Dep | Agor | Host | Fog | Inter. Anx | Somat | Tob | Alc | Cann | Other | |
---|---|---|---|---|---|---|---|---|---|---|
Depression | 1 | 0.627 ** | 0.620 ** | 0.761 ** | 0.808 ** | 0.690 ** | 0.040 | 0.132 ** | 0.262 ** | 0.185 ** |
Agoraphobia | 0.627 ** | 1 | 0.534 ** | 0.621 ** | 0.667 ** | 0.718 ** | 0.070 | 0.133 ** | 0.244 ** | 0.211 ** |
Hostility | 0.620 ** | 0.534 ** | 1 | 0.668 ** | 0.698 ** | 0.655 ** | 0.022 | 0.206 ** | 0.193 ** | 0.227 ** |
Mental Fog | 0.761 ** | 0.621 ** | 0.668 ** | 1 | 0.765 ** | 0.745 ** | 0.070 | 0.138 ** | 0.275 ** | 0.223 ** |
Inter. Anxiety | 0.808 ** | 0.667** | 0.698 ** | 0.765 ** | 1 | 0.723 ** | 0.076 | 0.150 ** | 00.257 ** | 0.233 ** |
Somatisation | 0.690 ** | 0.718 ** | 0.655 ** | 0.745 ** | 0.723 ** | 1 | 0.124 * | 0.195 ** | 0.302 ** | 0.262 ** |
Tobacco | 0.040 | 0.070 | 0.022 | 0.070 | 0.076 | 0.124 * | 1 | 0.303 ** | 0.257 ** | 0.279 ** |
Alcohol | 0.132 ** | 0.133 ** | 0.206 ** | 0.138 ** | 00.150 ** | 0.195 ** | 0.303 ** | 1 | 0.279 ** | 0.201 ** |
Cannabis | 0.262 ** | 0.244 ** | 0.193 ** | 0.275 ** | 0.257 ** | 0.302 ** | 0.257 ** | 0.279 ** | 1 | 0.349 ** |
Other Drugs | 0.185 ** | 0.211 ** | 0.227 ** | 0.223 ** | 0.233 ** | 0.262 ** | 0.279 ** | 0.201 ** | 0.349 ** | 1 |
Number of Factors | Item | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|---|
4 | |||||
Depression | 0.936 | ||||
Agoraphobia | 0.398 | 0.418 | |||
Hostility | 0.960 | ||||
Mental Fog | 0.617 | ||||
Interpersonal Anxiety | 0.797 | ||||
Somatisation | 0.975 | ||||
Alcohol | 0.376 | ||||
Cannabis | 0.712 | ||||
Other Substances | 0.450 | ||||
3 | |||||
Depression | 0.903 | - | |||
Agoraphobia | 0.396 | 0.400 | - | ||
Hostility | 0.604 | - | |||
Mental Fog | 0.699 | - | |||
Interpersonal Anxiety | 0.931 | - | |||
Somatisation | 0.981 | - | |||
Alcohol | 0.401 | - | |||
Cannabis | 0.685 | - | |||
Other Substances | 0.489 | - | |||
2 | |||||
Depression | 0.900 | - | - | ||
Agoraphobia | 0.711 | - | - | ||
Hostility | 0.739 | - | - | ||
Mental Fog | 0.862 | - | - | ||
Interpersonal Anxiety | 0.920 | - | - | ||
Somatisation | 0.772 | - | - | ||
Alcohol | 0.429 | - | - | ||
Cannabis | 0.595 | - | - | ||
Other Substances | 0.524 | - | - |
Model | Factor | Depr | Agor | Fog | Int. Anx. | Soma | Host | Alc | Cann | Other | Int~Ext |
---|---|---|---|---|---|---|---|---|---|---|---|
Correlated Factors | 0.743 ** | ||||||||||
Internalising | 0.862 | 0.750 | 0.867 | 0.896 | 0.842 | ||||||
Externalising | 0.806 | 0.227 | 0.328 | 0.300 | |||||||
Single-Factor | |||||||||||
p | 0.861 | 0.750 | 0.867 | 0.896 | 0.842 | 0.758 | 0.192 | 0.316 | 0.272 |
Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|
Digit Span | 4 | 14 | 7.82 | 1.79 |
Visual WM | 27 | 74 | 57.09 | 8.76 |
Inferring Relevance | 0.0002761 | 0.0019141 | 0.0008937 | 0.0002978 |
Shape-Number | 0.0000799 | 0.0016144 | 0.0006979 | 0.0002565 |
Stroop | −0.0002305 | 0.0008982 | 0.0002402 | 0.0001444 |
Go/NoGo | 0.0001582 | 0.0005083 | 0.0003417 | 0.0000592 |
Simple RT | 0.0002084 | 0.0003973 | 0.0003921 | 0.0000206 |
IT | 28.67 | 112.00 | 67.53 | 22.08 |
Control Variables | Digit Span | Vis WM | Infer. Rel. | Shape-Num | Stroop | Go/No Go | Simple RT | IT | Int | Ext | p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age & Gender | Digit Span | 1.000 | 0.045 | 0.020 | 0.020 | −0.020 | 0.050 | 0.060 | −0.042 | −0.060 | 0.038 | −0.048 |
Visual WM | 0.045 | 1.000 | 0.187 ** | 0.160 ** | 0.064 | 0.122 * | 0.203 ** | −0.051 | −0.053 | −0.066 | −0.056 | |
Infer. Rel. | 0.020 | 0.187 ** | 1.000 | 0.359 ** | 0.177 ** | 0.077 | 0.014 | 0.003 | −0.016 | −0.005 | −0.015 | |
Shape-Number | 0.020 | 0.160 ** | 0.359 ** | 1.000 | 0.100 * | 0.107 * | 0.078 | 0.021 | −0.016 | 0.010 | −0.013 | |
Stroop | −0.020 | 0.064 | 0.177 ** | 0.100 * | 1.000 | 0.013 | −0.017 | −0.044 | −0.032 | 0.031 | −0.024 | |
Go/NoGo | 0.050 | 0.122 * | 0.077 | 0.107 * | 0.013 | 1.000 | 0.223 ** | −0.048 | −0.088 | −0.061 | −0.087 | |
Simple RT | 0.060 | 0.203 ** | 0.014 | 0.078 | −0.017 | 0.223 ** | 1.000 | −0.023 | −0.130 ** | −0.226 ** | −0.148 ** | |
IT | −0.042 | −0.051 | 0.003 | 0.021 | −0.044 | −0.048 | −0.023 | 1.000 | 0.112 * | 0.089 | 0.113 * | |
Internalising | −0.060 | −0.053 | −0.016 | −0.016 | −0.032 | −0.088 | −0.130 ** | 0.112 * | 1.000 | 0.719 ** | 0.995 ** | |
Externalising | 0.038 | −0.066 | −0.005 | 0.010 | 0.031 | −0.061 | −0.226 ** | 0.089 | 0.719 ** | 1.000 | 0.782 ** | |
p-Factor | −0.048 | −0.056 | −0.015 | −0.013 | −0.024 | −0.087 | −0.148 ** | 0.113 * | 0.995 ** | 0.782 ** | 1.000 |
Predictors | Internalising | Externalising | p-Factor | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | β | p | Partial | Sr 2 | B | β | p | Partial | Sr 2 | B | β | p | Partial | Sr 2 | |
Age | −0.027 | −0.433 | <0.001 ** | −0.404 | 0.148 | −0.026 | −0.346 | <0.001 ** | −0.321 | 0.095 | −0.398 | −0.434 | <0.001 ** | −0.404 | 0.149 |
Gender | 0.360 | 0.174 | <0.001 ** | 0.188 | 0.028 | 0.007 | 0.003 | 0.951 | 0.003 | <0.001 | 4.68 | 0.156 | 0.001 ** | 0.170 | 0.023 |
Digit Span | −0.024 | −0.041 | 0.360 | −0.046 | 0.002 | 0.036 | 0.054 | 0.249 | 0.058 | 0.003 | −0.251 | −0.030 | 0.505 | −0.034 | 0.001 |
Vis WM | −0.002 | −0.013 | 0.783 | −0.014 | 0.001 | −0.003 | −0.022 | 0.669 | −0.022 | <0.001 | −0.026 | −0.015 | 0.758 | −0.016 | <0.001 |
Infer. Rel. | 13.03 | 0.003 | 0.950 | 0.003 | <0.001 | 149.99 | 0.032 | 0.555 | 0.030 | 0.001 | 415.57 | 0.007 | 0.891 | 0.006 | <0.001 |
Shape-Num | −9.37 | −0.003 | 0.958 | −0.003 | <0.001 | −61.02 | −0.015 | 0.778 | −0.014 | <0.001 | −214.33 | −0.004 | 0.934 | −0.004 | <0.001 |
Stroop | −182.03 | −0.025 | 0.578 | −0.028 | 0.001 | 264.25 | 0.031 | 0.664 | 0.034 | 0.001 | −1916.14 | −0.018 | 0.686 | −0.020 | <0.001 |
Go/NoGo | −840.70 | −0.048 | 0.297 | −0.053 | 0.002 | −203.95 | −0.010 | 0.835 | −0.011 | <0.001 | −11229.51 | −0.044 | 0.336 | −0.049 | 0.002 |
Simple RT | −4973.28 | −0.099 | 0.034 * | −0.107 | 0.009 | −12291.50 | −0.209 | <0.001 ** | −0.214 | 0.040 | −84882.76 | −0.117 | 0.012 * | −0.126 | 0.012 |
IT | 0.004 | 0.094 | 0.040 * | 0.104 | 0.008 | 0.005 | 0.082 | 0.083 | 0.088 | 0.006 | 0.064 | 0.095 | 0.037 * | 0.105 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haywood, D.; Baughman, F.D.; Mullan, B.A.; Heslop, K.R. What Accounts for the Factors of Psychopathology? An Investigation of the Neurocognitive Correlates of Internalising, Externalising, and the p-Factor. Brain Sci. 2022, 12, 421. https://doi.org/10.3390/brainsci12040421
Haywood D, Baughman FD, Mullan BA, Heslop KR. What Accounts for the Factors of Psychopathology? An Investigation of the Neurocognitive Correlates of Internalising, Externalising, and the p-Factor. Brain Sciences. 2022; 12(4):421. https://doi.org/10.3390/brainsci12040421
Chicago/Turabian StyleHaywood, Darren, Frank D. Baughman, Barbara A. Mullan, and Karen R. Heslop. 2022. "What Accounts for the Factors of Psychopathology? An Investigation of the Neurocognitive Correlates of Internalising, Externalising, and the p-Factor" Brain Sciences 12, no. 4: 421. https://doi.org/10.3390/brainsci12040421
APA StyleHaywood, D., Baughman, F. D., Mullan, B. A., & Heslop, K. R. (2022). What Accounts for the Factors of Psychopathology? An Investigation of the Neurocognitive Correlates of Internalising, Externalising, and the p-Factor. Brain Sciences, 12(4), 421. https://doi.org/10.3390/brainsci12040421