Case Report of Myelodysplastic Syndrome in a Sickle-Cell Disease Patient Treated with Hydroxyurea and Literature Review
Abstract
1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunson, A.; Keegan, T.H.M.; Bang, H.; Mahajan, A.; Paulukonis, S.; Wun, T. Increased risk of leukemia among sickle cell disease patients in California. Blood 2017, 130, 1597–1599. [Google Scholar] [CrossRef] [PubMed]
- De Montalembert, M.; Voskaridou, E.; Oevermann, L.; Cannas, G.; Habibi, A.; Loko, G.; Joseph, L.; Colombatti, R.; Bartolucci, P.; Brousse, V.; et al. Real-Life experience with hydroxyurea in patients with sickle cell disease: Results from the prospective ESCORT-HU cohort study. Am. J. Hematol. 2021, 96, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Singh, Z.N.; Huo, D.; Anastasi, J.; Smith, S.M.; Karrison, T.; Le Beau, M.M.; Larson, R.A.; Vardiman, J.W. Therapy-related myelodysplastic syndrome: Morphologic subclassification may not be clinically relevant. Am. J. Clin. Pathol. 2007, 127, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Soenen, V.; Preudhomme, C.; Roumier, C.; Daudignon, A.; Lai, J.L.; Fenaux, P. 17 p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 1998, 91, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Ok, C.Y.; Patel, K.P.; Garcia-Manero, G.; Routbort, M.J.; Fu, B.; Tang, G.; Goswami, M.; Singh, R.; Kanagal-Shamanna, R.; Pierce, S.A.; et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk. Res. 2015, 39, 348–354. [Google Scholar] [CrossRef] [PubMed]
- McNerney, M.E.; Godley, L.A.; Le Beau, M.M. Therapy-related myeloid neoplasms: When genetics and environment collide. Nat. Rev. Cancer 2017, 17, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.N.; Ramsingh, G.; Young, A.L.; Miller, C.A.; Touma, W.; Welch, J.S.; Lamprecht, T.L.; Shen, D.; Hundal, J.; Fulton, R.S.; et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2015, 518, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Sterkers, Y.; Preudhomme, C.; Lai, J.L.; Demory, J.L.; Caulier, M.T.; Wattel, E.; Bordessoule, D.; Bauters, F.; Fenaux, P. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: High proportion of cases with 17 p deletion. Blood 1998, 91, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Maia Filho, P.A.; Pereira, J.F.; Almeida Filho, T.P.; Cavalcanti, B.C.; Sousa, J.C.; Lemes, R.P.G. Is chronic use of hydroxyurea safe for patients with sickle cell anemia? An account of genotoxicity and mutagenicity. Environ. Mol. Mutagen 2019, 60, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Voskaridou, E.; Christoulas, D.; Bilalis, A.; Plata, E.; Varvagiannis, K.; Stamatopoulos, G.; Sinopoulou, K.; Balassopoulou, A.; Loukopoulos, D.; Terpos, E. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: Results of a 17-year, single-center trial (LaSHS). Blood 2010, 115, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Baz, W.; Najfeld, V.; Yotsuya, M.; Talwar, J.; Terjanian, T.; Forte, F. Development of myelodysplastic syndrome and acute myeloid leukemia 15 years after hydroxyurea use in a patient with sickle cell anemia. Clin. Med. Insights Oncol. 2012, 6, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Zemenides, S.; Erblich, T.; Luqmani, A.; Bain, B.J. Peripheral blood features of acute myeloid leukemia with myelodysplasia-related changes developing in a patient with sickle cell anemia. Am. J. Hematol. 2014, 89, 1010. [Google Scholar] [CrossRef] [PubMed]
- Aumont, C.; Driss, F.; Lazure, T.; Picard, V.; Creidy, R.; De Botton, S.; Saada, V.; Lambotte, O.; Bilhou-Nabera, C.; Tertian, G.; et al. Myelodysplastic syndrome with clonal cytogenetic abnormalities followed by fatal erythroid leukemia after 14 years of exposure to hydroxyurea for sickle cell anemia. Am. J. Hematol. 2015, 90, E131–E132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Maule, J.; Neff, J.L.; McCall, C.M.; Rapisardo, S.; Lagoo, A.S.; Yang, L.H.; Crawford, R.D.; Zhao, Y.; Wang, E. Myeloid neoplasms in the setting of sickle cell disease: An intrinsic association with the underlying condition rather than a coincidence; report of 4 cases and review of the literature. Mod. Pathol. 2019, 32, 1712–1726. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.M.; Bonner, M.; Pierciey, F.J.; Uchida, N.; Rottman, J.; Demopoulos, L.; Schmidt, M.; Kanter, J.; Walters, M.C.; Thompson, A.A.; et al. Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Adv. 2020, 4, 2058–2063. [Google Scholar] [CrossRef] [PubMed]
Case Nr, Ref, Country | Case 1, US [11] | Case 2, UK [12] | Case 3, FR [13] | Case 4, US [14] | Case 5, GR (Current Report) | Case 6, US [15] |
---|---|---|---|---|---|---|
Gender | Male | Male | Male | Male | Male | Male |
Hb beta-chain genotype | Not specified | S/S | S/S | S/β0 | S/S | S/S |
Treatment (daily dose) | Transfusions, HU (1.5 to 2.0 g) | none | Transfusions, HU (1 to 1.5 g) | Transfusion, HU (0.4 to 1.5 g) then matched-sibling donor HSCT with unspecified non-myelo-ablative therapy and radiation, then supportive therapy | Regular transfusions HU | HU then autologous HSCT with lentiviral vector encoding anti-sickling beta-globin, with busulfan myeloablative conditioning |
Cumulative HU exposure | 15 years | N/A | 14 years (i.e., excluding 3 years of discontinuation) | 2 years | 20 years | 8 + 2 years |
HU starting age | 26 years | N/A | 29 years | 25 years (?) | 20 years | 34 years |
Age at MDS diagnosis | 41 years | 55 years | 47 years | 34 years | 40 years | 45 years |
Time since HU start (time since HSCT) | 15 years | N/A | 18 years | 9 years (7 years) | 20 years | 11 years (3 years) |
2016 WHO classification | MDS-EB2/AML (authors RAEB-2/AML) | MDS-EB1 (authors: AML with myelodysplasia-related changes) | MDS-MLD/AML (authors: MDS/erythroid leukemia | MDS-MLD | MDS-EB1 | MDS-EB-2 |
Presentation | Refractory pancytopenia | anaemia and erythroblastosis | Severe macrocytic nonregenerative anemia | Progressive anaemia, thrombocyto-penia | Progressive anaemia, thrombocyto-penia | Anemia, neutropenia |
Peripheral blood smear | Not detailed | Agranular blast cells with high nucleocytoplasmic ratio, hypochromic erythrocytes, some with Pappenheimer bodies, ring sideroblasts | Holly-Jowel bodies, poikilocytosis, no blast | Red blood cell distortion, nucleated red blood cells, no blast | Holly-Jowel highly hypochromic erythrocytes, neutropenia, NRBC, no blasts | 3–9% blast-like cells |
Bone marrow examination | 15% myeloblasts (15% non-erythroid non- lymphoid cells) | hypercellularity (66%), 65% erythroblasts, 8 % myeloblasts (55% non-erythroid non-lymphoid cells), dysgranulopoiesis | no excess blasts, dysmyelopoiesis in 3 cell lineages | hypercellularity (95%), 2% blasts, erythroid and megakaryocytic dysplasia, erythroid hyperplasia and left-shifted myelopoiesis | Lipocytes almost absent. All three lineages represented with hyperplasia and dyserythropo-iesis of the red blood cell lineage (granulocytes/RBC ¼), maturation of the granulocytes with left shift and dysmegakaryopoiesis, with elevated number of megakaryocytes. 6% blasts of the granulocyte lineage (CD34 stain). Intermediate bone marrow infiltration, 12–15%, by T lymphocytes CD3, CD2, CD8, CD5, CD56 (partially)- positive with CD7 loss and CD57, TdT, TIA-1 negative. A few small B lymphocytes | 10% malignant myeloblasts |
Chromosomal analysis | 42XY with complex cytogenetics including t(5:18), del(7)(q21) and monosomy 17 | Complex abnormality with monosomy 5 and 7, del(17 p) | Monosomy 20, abnormalities 5 q, 17 p, 17 q | 45,XY,-2, der(7)(2pter- > 2p11.2::7p11.1- >7q22::?2q11.2- > 2qter),inv(9)(p11q13)c [18]/45, idem, ?del(20)(q11.2q13.1)[ | 25 metaphases were analysed: 1 metaphase had karyotype 46,XY 24 metaphases had karyotype 42,XY,-3,der(5)t(3;5)(q21;q15), -7, der(12)t(7;12)(q11.2;p11.2~13), -16,-17, -8,add(18)(p11.3),+?21[24]/46,xx [1] | Monosomy 7 and structurally abnormal chromosome 19p (pre-conditioning BM negative for monosomy 7 and mutations associated with myeloid disorders |
Transformation to AML | Transformation to AML after 34 days | Not reported | Transformation to AML after 2 years | none | no transformation | Transformation to AML during initial MDS treatment |
Treatment | Induction chemotherapy with idarubicin and cytarabine, then high cytarabine in anticipation of bone-marrow transplant-ation | Not reported | Induction chemotherapy with cytosine arabinoside and etoposide | Conditioning regimen including busulfan, fludarabine, and HSCT graft | corticosteroids and ciclosporin | 5-Azacytadine and decitabine, then after AML diagnosis, induction chemotherapy of idarubicin/cytarabine, followed by reinduction with cladribine, high-dose cytarabine, and granulocyte colony-stimulating factor, then myeloablative doses of melphalan, fludarabine, and total-body irradiation, followed by an HLA-haploidentical HSCT and cyclophosphamide posttransplant. |
Outcome | Pancyto-penia, sepsis, subarach-noidal haemorrhage, death | Not reported | Disease progression with CNS involvement, death | Alive after 21 months | Death 3 months after diagnosis | Relapse 6 months after HSCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flevari, P.; Voskaridou, E.; Galactéros, F.; Cannas, G.; Loko, G.; Joseph, L.; Bartolucci, P.; Gellen-Dautremer, J.; Bernit, E.; Charneau, C.; et al. Case Report of Myelodysplastic Syndrome in a Sickle-Cell Disease Patient Treated with Hydroxyurea and Literature Review. Biomedicines 2022, 10, 3201. https://doi.org/10.3390/biomedicines10123201
Flevari P, Voskaridou E, Galactéros F, Cannas G, Loko G, Joseph L, Bartolucci P, Gellen-Dautremer J, Bernit E, Charneau C, et al. Case Report of Myelodysplastic Syndrome in a Sickle-Cell Disease Patient Treated with Hydroxyurea and Literature Review. Biomedicines. 2022; 10(12):3201. https://doi.org/10.3390/biomedicines10123201
Chicago/Turabian StyleFlevari, Pagona, Ersi Voskaridou, Frédéric Galactéros, Giovanna Cannas, Gylna Loko, Laure Joseph, Pablo Bartolucci, Justine Gellen-Dautremer, Emmanuelle Bernit, Corine Charneau, and et al. 2022. "Case Report of Myelodysplastic Syndrome in a Sickle-Cell Disease Patient Treated with Hydroxyurea and Literature Review" Biomedicines 10, no. 12: 3201. https://doi.org/10.3390/biomedicines10123201
APA StyleFlevari, P., Voskaridou, E., Galactéros, F., Cannas, G., Loko, G., Joseph, L., Bartolucci, P., Gellen-Dautremer, J., Bernit, E., Charneau, C., & Habibi, A. (2022). Case Report of Myelodysplastic Syndrome in a Sickle-Cell Disease Patient Treated with Hydroxyurea and Literature Review. Biomedicines, 10(12), 3201. https://doi.org/10.3390/biomedicines10123201