The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Phenotyping
2.2.1. Sorbs Cohort
2.2.2. Validation Cohort from Leipzig
2.3. Statistical Association Analyses
2.3.1. Clinical Parameters
2.3.2. Genetic Association Studies
3. Results
3.1. Association of Serum FGF21 Concentrations with Clinical Traits
3.1.1. Food and Drug Cravings
3.1.2. Adipokines
3.2. Association of Genetic Variants in FGF21 with Metabolic Traits
3.2.1. Association of rs838133 with FGF21 Concentrations and Metabolic Traits Related to Obesity
3.2.2. Effects of Common Genetic Variation within the FGF21 Locus ± 10 kb
4. Discussion
4.1. Association of FGF21 with Food and Drug Craving
4.2. Association of FGF21 with Adipokines
4.3. Effects of Genetic Variation within the FGF21 Locus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishimura, T.; Nakatake, Y.; Konishi, M.; Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 2000, 1492, 203–206. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). U.S. Rockville Pike. 2020. Available online: https://www.ncbi.nlm.nih.gov/gene/26291 (accessed on 15 December 2020).
- Tanimura, Y.; Aoi, W.; Takanami, Y.; Kawai, Y.; Mizushima, K.; Naito, Y.; Yoshikawa, T. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, P.K.; Lun, M.; Kim, S.M.; Bredella, M.A.; Wright, S.; Zhang, Y.; Lee, H.; Catana, C.; Klibanski, A.; Patwari, P.; et al. FGF21 and the late adaptive response to starvation in humans. J. Clin. Investig. 2015, 125, 4601–4611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mraz, M.; Bartlova, M.; Lacinova, Z.; Michalsky, D.; Kasalicky, M.; Haluzikova, D.; Matoulek, M.; Dostalova, I.; Humenanska, V.; Haluzik, M. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. 2009, 71, 369–375. [Google Scholar] [CrossRef]
- Lundsgaard, A.-M.; Fritzen, A.M.; Sjøberg, K.A.; Myrmel, L.S.; Madsen, L.; Wojtaszewski, J.F.P.; Richter, E.A.; Kiens, B. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol. Metab. 2017, 6, 22–29. [Google Scholar] [CrossRef]
- Samms, R.J.; Lewis, J.E.; Norton, L.; Stephens, F.B.; Gaffney, C.J.; Butterfield, T.; Smith, D.P.; Cheng, C.C.; Perfield, J.W.; Adams, A.C.; et al. FGF21 Is an Insulin-Dependent Postprandial Hormone in Adult Humans. J. Clin. Endocrinol. Metab. 2017, 102, 3806–3813. [Google Scholar] [CrossRef] [Green Version]
- Søberg, S.; Andersen, E.S.; Dalsgaard, N.B.; Jarlhelt, I.; Hansen, N.L.; Hoffmann, N.; Vilsbøll, T.; Chenchar, A.; Jensen, M.; Grevengoed, T.J.; et al. FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest. Mol. Metab. 2018, 11, 96–103. [Google Scholar] [CrossRef]
- Mai, K.; Andres, J.; Biedasek, K.; Weicht, J.; Bobbert, T.; Sabath, M.; Meinus, S.; Reinecke, F.; Möhlig, M.; Weickert, M.O.; et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 2009, 58, 1532–1538. [Google Scholar] [CrossRef] [Green Version]
- Chavez, A.O.; Molina-Carrion, M.; Abdul-Ghani, M.A.; Folli, F.; Defronzo, R.A.; Tripathy, D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009, 32, 1542–1546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yeung, D.C.Y.; Karpisek, M.; Stejskal, D.; Zhou, Z.-G.; Liu, F.; Wong, R.L.C.; Chow, W.-S.; Tso, A.W.K.; Lam, K.S.L.; et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lim, S.; Hong, E.-S.; Kim, J.H.; Moon, M.K.; Chun, E.J.; Choi, S.I.; Kim, Y.-B.; Park, Y.J.; Park, K.S.; et al. Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin. Endocrinol. 2014, 80, 57–64. [Google Scholar] [CrossRef]
- Kharitonenkov, A.; Shiyanova, T.L.; Koester, A.; Ford, A.M.; Micanovic, R.; Galbreath, E.J.; Sandusky, G.E.; Hammond, L.J.; Moyers, J.S.; Owens, R.A.; et al. FGF-21 as a novel metabolic regulator. J. Clin. Investig. 2005, 115, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Stanislaus, S.; Chinookoswong, N.; Lau, Y.Y.; Hager, T.; Patel, J.; Ge, H.; Weiszmann, J.; Lu, S.-C.; Graham, M.; et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1105–E1114. [Google Scholar] [CrossRef] [Green Version]
- Coskun, T.; Bina, H.A.; Schneider, M.A.; Dunbar, J.D.; Hu, C.C.; Chen, Y.; Moller, D.E.; Kharitonenkov, A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149, 6018–6027. [Google Scholar] [CrossRef]
- Ge, X.; Chen, C.; Hui, X.; Wang, Y.; Lam, K.S.L.; Xu, A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J. Biol. Chem. 2011, 286, 34533–34541. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Li, J.-Y.; Zhao, T.-T.; Li, S.-M.; Shen, C.-B.; Li, D.-S.; Wang, W.-F. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation 2018, 41, 73–80. [Google Scholar] [CrossRef]
- Chen, C.; Cheung, B.M.Y.; Tso, A.W.K.; Wang, Y.; Law, L.S.C.; Ong, K.L.; Wat, N.M.S.; Xu, A.; Lam, K.S.L. High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: A 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 2011, 34, 2113–2115. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zhu, B.; Jiang, F.; Fan, H. Serum FGF-21 levels in type 2 diabetic patients. Endocr. Res. 2011, 36, 142–148. [Google Scholar] [CrossRef]
- Li, H.; Fang, Q.; Gao, F.; Fan, J.; Zhou, J.; Wang, X.; Zhang, H.; Pan, X.; Bao, Y.; Xiang, K.; et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J. Hepatol. 2010, 53, 934–940. [Google Scholar] [CrossRef]
- Kralisch, S.; Tönjes, A.; Krause, K.; Richter, J.; Lossner, U.; Kovacs, P.; Ebert, T.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Fibroblast growth factor-21 serum concentrations are associated with metabolic and hepatic markers in humans. J. Endocrinol. 2013, 216, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Lin, V.Y.; Goetz, R.; Mohammadi, M.; Mangelsdorf, D.J.; Kliewer, S.A. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008, 8, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Feng, D.; Qu, X.; Fu, J.; Wang, Y.; Li, L.; Li, L.; Han, L.; Esangbedo, I.C.; Li, M.; et al. Role of adipokines FGF21, leptin and adiponectin in self-concept of youths with obesity. Eur. Neuropsychopharmacol. 2018, 28, 892–902. [Google Scholar] [CrossRef]
- Minard, A.Y.; Tan, S.-X.; Yang, P.; Fazakerley, D.J.; Domanova, W.; Parker, B.L.; Humphrey, S.J.; Jothi, R.; Stöckli, J.; James, D.E. mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep. 2016, 17, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Santoso, P.; Nakata, M.; Shiizaki, K.; Boyang, Z.; Parmila, K.; Otgon-Uul, Z.; Hashimoto, K.; Satoh, T.; Mori, M.; Kuro-O, M.; et al. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Sci. Rep. 2017, 7, 45819. [Google Scholar] [CrossRef]
- Talukdar, S.; Owen, B.M.; Song, P.; Hernandez, G.; Zhang, Y.; Zhou, Y.; Scott, W.T.; Paratala, B.; Turner, T.; Smith, A.; et al. FGF21 Regulates Sweet and Alcohol Preference. Cell Metab. 2016, 23, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Zhou, Y.; Li, D.; Rossulek, M.; Dong, J.; Somayaji, V.; Weng, Y.; Clark, R.; Lanba, A.; Owen, B.M.; et al. A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects. Cell Metab. 2016, 23, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Gaich, G.; Chien, J.Y.; Fu, H.; Glass, L.C.; Deeg, M.A.; Holland, W.L.; Kharitonenkov, A.; Bumol, T.; Schilske, H.K.; Moller, D.E. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013, 18, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.M.; Somayaji, V.R.; Dong, J.Q.; Rolph, T.P.; Weng, Y.; Chabot, J.R.; Gropp, K.E.; Talukdar, S.; Calle, R.A. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes. Metab. 2017, 19, 1762–1772. [Google Scholar] [CrossRef]
- Baruch, A.; Wong, C.; Chinn, L.W.; Vaze, A.; Sonoda, J.; Gelzleichter, T.; Chen, S.; Lewin-Koh, N.; Morrow, L.; Dheerendra, S.; et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc. Natl. Acad. Sci. USA 2020, 117, 28992–29000. [Google Scholar] [CrossRef]
- Frayling, T.M.; Beaumont, R.N.; Jones, S.E.; Yaghootkar, H.; Tuke, M.A.; Ruth, K.S.; Casanova, F.; West, B.; Locke, J.; Sharp, S.; et al. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Rep. 2018, 23, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Søberg, S.; Sandholt, C.H.; Jespersen, N.Z.; Toft, U.; Madsen, A.L.; von Holstein-Rathlou, S.; Grevengoed, T.J.; Christensen, K.B.; Bredie, W.L.P.; Potthoff, M.J.; et al. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metab. 2017, 25, 1045–1053.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, A.Y.; Workalemahu, T.; Paynter, N.P.; Rose, L.M.; Giulianini, F.; Tanaka, T.; Ngwa, J.S.; Qi, Q.; Curhan, G.C.; Rimm, E.B.; et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. Mol. Genet. 2013, 22, 1895–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heianza, Y.; Ma, W.; Huang, T.; Wang, T.; Zheng, Y.; Smith, S.R.; Bray, G.A.; Sacks, F.M.; Qi, L. Macronutrient Intake-Associated FGF21 Genotype Modifies Effects of Weight-Loss Diets on 2-Year Changes of Central Adiposity and Body Composition: The POUNDS Lost Trial. Diabetes Care 2016, 39, 1909–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Ngwa, J.S.; van Rooij, F.J.A.; Zillikens, M.C.; Wojczynski, M.K.; Frazier-Wood, A.C.; Houston, D.K.; Kanoni, S.; Lemaitre, R.N.; Luan, J.; et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 2013, 97, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tönjes, A.; Kralisch, S.; Lössner, U.; Kovacs, P.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Metabolic and genetic predictors of circulating adipocyte fatty acid-binding protein. Int. J. Obes. 2012, 36, 766–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tönjes, A.; Koriath, M.; Schleinitz, D.; Dietrich, K.; Böttcher, Y.; Rayner, N.W.; Almgren, P.; Enigk, B.; Richter, O.; Rohm, S.; et al. Genetic variation in GPR133 is associated with height: Genome wide association study in the self-contained population of Sorbs. Hum. Mol. Genet. 2009, 18, 4662–4668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tönjes, A.; Zeggini, E.; Kovacs, P.; Böttcher, Y.; Schleinitz, D.; Dietrich, K.; Morris, A.P.; Enigk, B.; Rayner, N.W.; Koriath, M.; et al. Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany. Eur. J. Hum. Genet. 2010, 18, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ebert, T.; Gebhardt, C.; Scholz, M.; Wohland, T.; Schleinitz, D.; Fasshauer, M.; Blüher, M.; Stumvoll, M.; Kovacs, P.; Tönjes, A. Relationship Between 12 Adipocytokines and Distinct Components of the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2018, 103, 1015–1023. [Google Scholar] [CrossRef]
- Tönjes, A.; Scholz, M.; Breitfeld, J.; Marzi, C.; Grallert, H.; Gross, A.; Ladenvall, C.; Schleinitz, D.; Krause, K.; Kirsten, H.; et al. Genome wide meta-analysis highlights the role of genetic variation in RARRES2 in the regulation of circulating serum chemerin. PLoS Genet. 2014, 10, e1004854. [Google Scholar] [CrossRef]
- Loffler, A.; Luck, T.; Then, F.S.; Sikorski, C.; Kovacs, P.; Bottcher, Y.; Breitfeld, J.; Tonjes, A.; Horstmann, A.; Loffler, M.; et al. Eating Behaviour in the General Population: An Analysis of the Factor Structure of the German Version of the Three-Factor-Eating-Questionnaire (TFEQ) and Its Association with the Body Mass Index. PLoS ONE 2015, 10, e0133977. [Google Scholar] [CrossRef]
- Pudel, V.; Westhöfer, J. Fragebogen zum Eßverhalten (FEV); Verlag für Psychologie Dr. C.J. Hogrefe: Göttingen, Germany; Toronto, ON, Canada; Zürich, Switzerland, 1989. [Google Scholar]
- Löffler, A.; Luck, T.; Then, F.S.; Luck-Sikorski, C.; Pabst, A.; Kovacs, P.; Böttcher, Y.; Breitfeld, J.; Tönjes, A.; Horstmann, A.; et al. Effects of psychological eating behaviour domains on the association between socio-economic status and BMI. Public Health Nutr. 2017, 20, 2706–2712. [Google Scholar] [CrossRef] [Green Version]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Verger, E.O.; Armstrong, P.; Nielsen, T.; Chakaroun, R.; Aron-Wisnewsky, J.; Gøbel, R.J.; Schütz, T.; Delaere, F.; Gausseres, N.; Clément, K.; et al. Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. J. Acad. Nutr. Diet. 2017, 117, 878–888. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M.N.; van der Harst, P.; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S.E.; et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 2011, 43, 1131–1138. [Google Scholar] [CrossRef]
- Kharitonenkov, A.; Wroblewski, V.J.; Koester, A.; Chen, Y.-F.; Clutinger, C.K.; Tigno, X.T.; Hansen, B.C.; Shanafelt, A.B.; Etgen, G.J. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007, 148, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Fisher, F.M.; Chui, P.C.; Antonellis, P.J.; Bina, H.A.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010, 59, 2781–2789. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.; Liu, C.; O’Reilly, P.; Gao, H.; Song, P.; Xu, B.; Ruggeri, B.; Amin, N.; Jia, T.; Preis, S.; et al. KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proc. Natl. Acad. Sci. USA 2016, 113, 14372–14377. [Google Scholar] [CrossRef] [Green Version]
- Desai, B.N.; Singhal, G.; Watanabe, M.; Stevanovic, D.; Lundasen, T.; Fisher, F.M.; Mather, M.L.; Vardeh, H.G.; Douris, N.; Adams, A.C.; et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 2017, 6, 1395–1406. [Google Scholar] [CrossRef]
- Kamizono, Y.; Shiga, Y.; Suematsu, Y.; Imaizumi, S.; Tsukahara, H.; Noda, K.; Kuwano, T.; Fujimi, K.; Saku, K.; Miura, S.-I. Impact of cigarette smoking cessation on plasma α-klotho levels. Medicine 2018, 97, e11947. [Google Scholar] [CrossRef]
- Lin, Z.; Tian, H.; Lam, K.S.L.; Lin, S.; Hoo, R.C.L.; Konishi, M.; Itoh, N.; Wang, Y.; Bornstein, S.R.; Xu, A.; et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013, 17, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 2005, 46, 1369–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spranger, J.; Kroke, A.; Möhlig, M.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F.H. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003, 361, 226–228. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Tchernova, J.; Whincup, P.; Lowe, G.D.; Rumley, A.; Brown, K.; Cherry, L.; Sattar, N. Associations of adiponectin with metabolic and vascular risk parameters in the British Regional Heart Study reveal stronger links to insulin resistance-related than to coronory heart disease risk-related parameters. Int. J. Obes. 2007, 31, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Ryo, M.; Nakamura, T.; Kihara, S.; Kumada, M.; Shibazaki, S.; Takahashi, M.; Nagai, M.; Matsuzawa, Y.; Funahashi, T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 2004, 68, 975–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, T.-K.; Adams, M.J.; Davies, G.; Howard, D.M.; Hall, L.S.; Padmanabhan, S.; Murray, A.D.; Smith, B.H.; Campbell, A.; Hayward, C.; et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol. Psychiatry 2017, 22, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Fehrmann, R.S.N.; Jansen, R.C.; Veldink, J.H.; Westra, H.-J.; Arends, D.; Bonder, M.J.; Fu, J.; Deelen, P.; Groen, H.J.M.; Smolonska, A.; et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 2011, 7, e1002197. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Huang, T.; Han, J. Diet/lifestyle and risk of diabetes and glycemic traits: A Mendelian randomization study. Lipids Health Dis. 2018, 17, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelou, E.; Gao, H.; Chu, C.; Ntritsos, G.; Blakeley, P.; Butts, A.R.; Pazoki, R.; Suzuki, H.; Koskeridis, F.; Yiorkas, A.M.; et al. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat. Hum. Behav. 2019, 3, 950–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | Males (Above the Limit of Detection) | Females (Above the Limit of Detection) | p (Males vs. Females) | |
---|---|---|---|---|
n | 1046 (419 m/620 f) | 330 | 450 | |
Anthropometric traits | ||||
Age (years) | 44 (25) | 50 (23) | 51 (24) | 0.313 |
BMI (kg/m2) | 26.0 (5.6) | 27.0 (4.6) | 26.9 (7.8) | 0.287 |
WHR | 0.88 (0.17) | 0.96 (0.12) | 0.83 (0.11) | 2.599 × 10−60 |
Height (cm) | 172 (13) | 177 (10) | 164 (9) | 7.103 × 10−87 |
Bodyweight (kg) | 75.0 (20.0) | 84.5 (16.0) | 71.0 (17.0) | 3.004 × 10−36 |
SBP (mmHg) | 134.25 (25.00) | 142.50 (21.00) | 133.25 (25.00) | 1.801 × 10−11 |
Glucose/insulin traits | ||||
T2D (yes/no) | 114/921 | 41/286 | 61/389 | 0.678 |
FG (mmol/L) | 5.29 (0.76) | 5.54 (0.69) | 5.28 (0.76) | 3.608 × 10−10 |
FI (pmol/L) | 33.90 (28.10) | 33.75 (28.60) | 37.20 (30.70) | 0.038 |
HbA1c (%) | 5.3 (0.5) | 5.4 (0.6) | 5.4 (0.6) | 0.989 |
HOMA-IR | 1.13 (1.41) | 1.45 (1.38) | 1.49 (1.48) | 0.561 |
Lipid traits | ||||
LLM (yes/no) | 120/919 | 46/284 | 56/394 | 0.541 |
TG (mmol/L) | 1.06 (0.75) | 1.35 (0.96) | 1.02 (0.68) | 4.830 × 10−11 |
LDL-C (mmol/L) | 3.34 (1.26) | 3.57 (1.22) | 3.32 (1.27) | 0.002 |
HDL-C (mmol/L) | 1.59 (0.58) | 1.42 (0.45) | 1.7 (0.56) | 3.532 × 10−21 |
Liver metabolism | ||||
γGT (µlat/L) | 0.38 (0.44) | 0.50 (0.54) | 0.26 (0.20) | 9.515 × 10−36 |
ALAT (µkat/L) | 0.41 (0.27) | 0.49 (0.28) | 0.32 (0.17) | 4.911 × 10−40 |
ASAT (µkat/L) | 0.45 (0.16) | 0.50 (0.17) | 0.41 (0.12) | 7.342 × 10−29 |
AP (µkat/L) | 0.99 (0.41) | 1.13 (0.36) | 1.03 (0.47) | 1.400 × 10−5 |
Adipokines | ||||
FGF21 (ng/L) | 84.48 (162.88) | 101.31 (147.90) | 92.39 (113.66) | 0.023 |
Irisin (µg/mL) | 0.76 (0.39) | 0.76 (0.36) | 0.81 (0.38) | 0.018 |
Adiponectin(µg/mL) | 14.79 (8.12) | 13.68 (6.21) | 17.40 (6.99) | 2.730 × 10−17 |
AFABP4 (µg/L) | 12.64 (15.38) | 13.76 (11.57) | 24.53 (22.36) | 1.663 × 10−25 |
Chemerin (ng/mL) | 113.38 (44.70) | 118.12 (47.00) | 124.69 (55.60) | 0.001 |
Vaspin (ng/mL) | 0.52 (1.11) | 0.36 (0.41) | 0.59 (0.97) | 4.501 × 10−18 |
Progranulin (ng/mL) | 106.50 (37.47) | 109.55 (36.36) | 110.15 (35.03) | 0.430 |
AGF (µg/L) | 37.78 (35.36) | 39.69 (38.48) | 37.78 (40.10) | 0.760 |
IGF-1 (ng/mL) | 169.20 (77.45) | 156.05 (74.85) | 150.05 (76.90) | 0.023 |
pro-NT (pmol/L) | 113.97 (62.54) | 109.47 (56.13) | 116.53 (61.91) | 0.113 |
PENK (pmol/L) | 57.75 (20.12) | 55.10 (18.69) | 57.79 (22.23) | 0.010 |
Luxury food | ||||
Smoker(yes/no) | 351/688 | 180/150 | 92/358 | 5.436 × 10−23 |
cigarette (packs/year) | 5.00 (8.50) | 8.13 (17.00) | 2.35 (4.18) | 8.838 × 10−14 |
Score alcohol | 3 (3) | 4 (2) | 2 (1) | 2.690 × 10−49 |
Score coffee | 1 (1) | 2 (1) | 2 (1) | 0.911 |
Eating behavior | ||||
Score disinhibition | 4 (4) | 3 (3) | 4 (5) | 0.003 |
Score hunger | 3 (4) | 3 (4) | 4 (4) | 0.014 |
Score restraint | 7.0 (7.5) | 6.0 (5.5) | 9.0 (8.0) | 1.871 × 10−9 |
Total | Males | Females | p | |
---|---|---|---|---|
n | 704 | 387 | 317 | |
Age (years) | 54 (20) | 52 (22) | 57 (16) | 0.004 |
BMI (kg/m2) | 37.8 (13.14) | 37.8 (15.86) | 37.4 (9.15) | 0.155 |
FGF21 (ng/L) | 198.84 (207.29) | 184.73 (196.47) | 212.98 (224.69) | 0.005 |
T2D (yes/no) | 341/371 | 156/228 | 180/137 | 2.00 × 10−5 |
Smoker (yes/no) | 114/518 | 62/295 | 51/218 | 0.608 |
LD-Group | SNP | A1 | A2 | MAF |
---|---|---|---|---|
1 | rs4015 | T | C | 0.110 |
rs12611028 | T | C | 0.095 | |
2 | rs838133 | G | A | 0.493 |
rs838144 | T | C | 0.483 | |
3 | rs4021 | G | A | 0.245 |
4 | rs12975033 | T | A | 0.401 |
rs8104897 | A | C | 0.398 | |
rs8105137 | A | G | 0.398 | |
rs8106205 | C | T | 0.414 | |
rs11667321 | G | A | 0.414 | |
5 | rs12975781 | T | C | 0.341 |
6 | rs3826821 | A | G | 0.065 |
7 | rs838143 | A | G | 0.081 |
8 | rs838136 | C | T | 0.285 |
9 | rs499765 | G | C | 0.331 |
Dependent Variables | FGF21 (Unadjusted) | FGF21 (Adjusted for Age, Sex, BMI) | |||
---|---|---|---|---|---|
Linear regression | |||||
β | p | β | p | n | |
Disinhibition | −0.152 | 0.001 | −0.158 | 2.170 × 10−4 | 465 |
Hunger | −0.061 | 0.184 | −0.052 | 0.260 | 465 |
Restraint | 0.066 | 0.153 | 0.045 | 0.318 | 465 |
Packyears | 0.239 | 6.800 × 10−5 | 0.111 | 0.030 | 268 |
Generalized linear model | |||||
OR | p | OR | p | n | |
Alcohol consumption | 1.315 | 1.300 × 10−5 | 1.281 | 1.510 × 10−4 | 768 |
Coffee consumption | 0.872 | 0.029 | 0.800 | 0.001 | 761 |
Binary logistic regression | |||||
OR | p | OR | p | n | |
Smoker (yes/no) | 1.341 | 7.200 × 10−5 | 1.394 | 6.700 × 10−5 | 780 |
Dependent Variables | FGF21 (Unadjusted) | FGF21 (Adjusted for Age, Sex, BMI) | |||
---|---|---|---|---|---|
Linear regression | |||||
β | p | β | p | n | |
Alcohol consumption | 0.162 | 3.00 × 10−4 | 0.164 | 1.00 × 10−3 | 492 |
Binary logistic regression | |||||
OR | p | OR | p | n | |
Smoker (yes/no) | 1.322 | 0.011 | 1.666 | 4.10 × 10−5 | 614 |
Adipokine | n | Spearman’s Rank Correlation | Partial Correlation (Adjusted for Age, Sex, BMI) | ||
---|---|---|---|---|---|
Spearman’s Rank Coefficient | p | Correlation Coefficient | p | ||
Irisin | 777 | −0.048 | 0.178 | −0.060 | 0.150 |
Adiponectin | 725 | −0.092 | 0.013 | −0.068 | 0.105 |
AFABP | 780 | 0.271 | 1.393×10−14 | 0.248 | 2.444×10−10 |
Chemerin | 779 | 0.246 | 3.294×10−12 | 0.200 | 5.586×10−9 |
Vaspin | 779 | 0.029 | 0.424 | 0.067 | 0.109 |
Progranulin | 780 | 0.123 | 0.001 | 0.098 | 0.019 |
AGF | 628 | 0.027 | 0.498 | −0.042 | 0.322 |
IGF-1 | 780 | −0.256 | 4.195×10−13 | −0.195 | 3.000×10−6 |
pro-NT | 777 | 0.020 | 0.584 | 0.021 | 0.614 |
PENK | 777 | 0.021 | 0.559 | 0.092 | 0.028 |
LD 1 | LD 2 | LD 3 | LD 4 | LD 5 | LD 6 | LD 7 | LD 8 | n | ||
---|---|---|---|---|---|---|---|---|---|---|
Fasting glucose | β | −0.018 | 0.005 | −0.003 | 0.003 | 0.004 | 0.016 | 0.012 | 0.002 | |
s.e. | 0.013 | 0.008 | 0.010 | 0.008 | 0.008 | 0.016 | 0.015 | 0.009 | 946 | |
p | 0.183 | 0.486 | 0.777 | 0.746 | 0.624 | 0.315 | 0.424 | 0.857 | ||
Fasting insulin | β | 0.128 | 0.030 | 0.049 | 0.018 | 0.030 | 0.111 | 0.044 | 0.026 | |
s.e. | 0.042 | 0.025 | 0.030 | 0.025 | 0.027 | 0.052 | 0.046 | 0.029 | 946 | |
p | 0.002 | 0.214 | 0.104 | 0.468 | 0.269 | 0.033 | 0.349 | 0.371 | ||
HOMA-IR | β | 0.109 | 0.047 | 0.044 | 0.030 | 0.036 | 0.135 | 0.066 | 0.046 | |
s.e. | 0.046 | 0.027 | 0.033 | 0.0274 | 0.029 | 0.056 | 0.051 | 0.032 | 935 | |
p | 0.019 | 0.079 | 0.180 | 0.274 | 0.215 | 0.017 | 0.196 | 0.155 | ||
HbA1c | β | −0.005 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.008 | |
s.e. | 0.007 | 0.004 | 0.005 | 0.004 | 0.004 | 0.009 | 0.008 | 0.005 | 953 | |
p | 0.472 | 0.884 | 0.834 | 0.819 | 0.804 | 0.845 | 0.859 | 0.086 | ||
LDL-C | β | −0.031 | −0.034 | −0.021 | −0.044 | −0.032 | 0.016 | 0.021 | −0.041 | |
s.e. | 0.022 | 0.012 | 0.015 | 0.012 | 0.013 | 0.025 | 0.023 | 0.015 | 845 | |
P | 0.150 | 0.005 | 0.165 | 4.482 × 10−4 | 0.018 | 0.538 | 0.352 | 0.005 | ||
HDL-C | β | 0.010 | −0.006 | −0.001 | −0.017 | −0.016 | −0.028 | 0.021 | 0.010 | |
s.e. | 0.017 | 0.010 | 0.012 | 0.010 | 0.011 | 0.021 | 0.019 | 0.012 | 845 | |
p | 0.578 | 0.511 | 0.962 | 0.100 | 0.129 | 0.178 | 0.263 | 0.417 | ||
TG | β | 0.043 | −0.031 | 0.017 | −0.030 | −0.018 | 0.072 | 0.008 | −0.012 | |
s.e. | 0.038 | 0.021 | 0.026 | 0.022 | 0.023 | 0.045 | 0.040 | 0.026 | 845 | |
p | 0.260 | 0.142 | 0.517 | 0.169 | 0.427 | 0.107 | 0.833 | 0.642 | ||
γGT | β | 0.052 | -0.035 | −0.027 | −0.001 | −0.007 | 0.072 | −0.113 | −0.043 | |
s.e. | 0.048 | 0.028 | 0.035 | 0.029 | 0.030 | 0.059 | 0.053 | 0.034 | 958 | |
p | 0.287 | 0.205 | 0.429 | 0.965 | 0.828 | 0.224 | 0.034 | 0.198 | ||
AP | β | 0.014 | 0.022 | 0.009 | 0.020 | 0.014 | 0.020 | 0.003 | 0.018 | |
s.e. | 0.021 | 0.012 | 0.015 | 0.012 | 0.013 | 0.026 | 0.023 | 0.015 | 958 | |
p | 0.521 | 0.077 | 0.530 | 0.115 | 0.304 | 0.439 | 0.912 | 0.210 | ||
ALAT | β | 0.006 | −0.026 | −0.017 | −0.025 | −0.023 | 0.015 | −0.012 | −0.014 | |
s.e. | 0.030 | 0.017 | 0.021 | 0.017 | 0.019 | 0.036 | 0.033 | 0.021 | 958 | |
p | 0.850 | 0.133 | 0.425 | 0.145 | 0.217 | 0.685 | 0.724 | 0.508 | ||
ASAT | β | 0.020 | −0.020 | −0.006 | −0.022 | −0.013 | 0.007 | −0.003 | −0.016 | |
s.e. | 0.019 | 0.011 | 0.013 | 0.011 | 0.012 | 0.023 | 0.021 | 0.013 | 958 | |
p | 0.281 | 0.068 | 0.661 | 0.047 | 0.263 | 0.754 | 0.865 | 0.231 |
LD 1 | LD 2 | LD 3 | LD 4 | LD 5 | LD 6 | LD 7 | LD 8 | n | ||
---|---|---|---|---|---|---|---|---|---|---|
FGF21- serum level | β | 0.227 | 0.068 | 0.048 | 0.081 | 0.076 | −0.155 | 0.001 | 0.079 | |
s.e. | 0.088 | 0.051 | 0.063 | 0.052 | 0.056 | 0.108 | 0.098 | 0.061 | 724 | |
p | 0.010 | 0.180 | 0.453 | 0.121 | 0.173 | 0.150 | 0.989 | 0.195 | ||
FGF21- expression | β | −0.001 | 1.261 × 10−4 | 2.669 × 10−4 | −0.001 | −0.001 | −2.052 × 10−4 | 0.003 | 0.001 | |
s.e. | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.001 | 938 | |
p | 0.424 | 0.900 | 0.830 | 0.313 | 0.357 | 0.923 | 0.165 | 0.571 | ||
BMI | β | −0.010 | −0.006 | −0.007 | −0.005 | −0.005 | 0.004 | −0.002 | −0.001 | |
s.e. | 0.012 | 0.007 | 0.008 | 0.007 | 0.007 | 0.014 | 0.013 | 0.008 | 958 | |
p | 0.430 | 0.358 | 0.390 | 0.517 | 0.523 | 0.785 | 0.901 | 0.940 | ||
WHR | β | 0.005 | 3.225 × 10−4 | 0.004 | 0.001 | 0.002 | 4.664 × 10−4 | 4.915 × 10−4 | 0.003 | |
s.e. | 0.005 | 0.003 | 0.004 | 0.003 | 0.003 | 0.006 | 0.006 | 0.003 | 957 | |
p | 0.283 | 0.912 | 0.315 | 0.724 | 0.622 | 0.940 | 0.929 | 0.403 | ||
Height | β | −0.002 | −0.002 | −0.004 | 0.001 | 0.001 | 0.004 | −0.009 | −0.003 | |
s.e. | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.002 | 958 | |
p | 0.515 | 0.276 | 0.031 | 0.726 | 0.418 | 0.228 | 0.003 | 0.069 | ||
Weight | β | −0.005 | −0.004 | −0.009 | 8.199 × 10−5 | 0.002 | 0.008 | −0.018 | −0.007 | |
s.e | 0.005 | 0.003 | 0.004 | 0.003 | 0.003 | 0.007 | 0.006 | 0.004 | 958 | |
p | 0.323 | 0.160 | 0.022 | 0.980 | 0.647 | 0.226 | 0.003 | 0.051 | ||
SBP | β | −0.002 | −0.002 | −0.008 | −0.057 | 0.004 | 0.020 | −0.009 | −4.078 × 10−4 | |
s.e. | 0.008 | 0.005 | 0.006 | 0.005 | 0.005 | 0.010 | 0.009 | 0.006 | 958 | |
p | 0.850 | 0.659 | 0.193 | 0.991 | 0.475 | 0.054 | 0.322 | 0.944 |
LD 1 | LD 2 | LD 3 | LD 4 | LD 5 | LD 6 | LD 7 | LD 8 | n | ||
---|---|---|---|---|---|---|---|---|---|---|
IGF-1 | β | −0.014 | −0.017 | 0.001 | −0.029 | −0.028 | 0.020 | 0.038 | 0.004 | |
s.e. | 0.023 | 0.013 | 0.017 | 0.014 | 0.015 | 0.029 | 0.026 | 0.016 | 958 | |
p | 0.562 | 0.208 | 0.955 | 0.034 | 0.057 | 0.491 | 0.144 | 0.783 | ||
Chemerin | β | −0.001 | −0.014 | −0.017 | −0.014 | −0.015 | 0.010 | −0.017 | −0.021 | |
s.e. | 0.024 | 0.014 | 0.017 | 0.014 | 0.015 | 0.030 | 0.027 | 0.017 | 929 | |
p | 0.961 | 0.306 | 0.312 | 0.337 | 0.332 | 0.748 | 0.528 | 0.203 | ||
Progranulin | β | 0.027 | 0.007 | 0.013 | 0.008 | 0.007 | 0.019 | 0.005 | 0.006 | |
s.e. | 0.019 | 0.011 | 0.014 | 0.011 | 0.012 | 0.023 | 0.021 | 0.013 | 957 | |
p | 0.156 | 0.513 | 0.336 | 0.472 | 0.541 | 0.424 | 0.801 | 0.668 | ||
AFABP | β | 0.088 | 0.027 | 0.026 | 0.019 | 0.013 | 0.020 | 0.010 | 0.029 | |
s.e. | 0.040 | 0.023 | 0.029 | 0.024 | 0.025 | 0.050 | 0.045 | 0.028 | 930 | |
p | 0.028 | 0.245 | 0.364 | 0.416 | 0.612 | 0.690 | 0.827 | 0.296 | ||
Adiponectin | β | 0.057 | −0.011 | 0.014 | −0.014 | −0.008 | 0.014 | 0.008 | −0.004 | |
s.e. | 0.026 | 0.015 | 0.019 | 0.015 | 0.016 | 0.032 | 0.029 | 0.018 | 928 | |
p | 0.031 | 0.482 | 0.458 | 0.343 | 0.637 | 0.660 | 0.786 | 0.807 | ||
Irisin | β | −0.001 | −0.002 | −0.017 | 0.002 | −0.008 | 0.002 | −0.023 | −0.004 | |
s.e. | 0.025 | 0.014 | 0.018 | 0.015 | 0.016 | 0.031 | 0.027 | 0.017 | 954 | |
p | 0.984 | 0.878 | 0.336 | 0.869 | 0.624 | 0.939 | 0.401 | 0.810 | ||
Vaspin | β | 0.046 | −0.030 | 0.031 | −0.044 | −0.030 | 0.129 | 0.036 | 0.029 | |
s.e. | 0.078 | 0.045 | 0.055 | 0.046 | 0.049 | 0.095 | 0.085 | 0.054 | 952 | |
p | 0.562 | 0.500 | 0.577 | 0.333 | 0.536 | 0.173 | 0.674 | 0.586 | ||
AGF | β | 0.053 | 0.065 | −0,058 | 0.066 | 0.021 | 0.154 | 0.055 | −0.008 | |
s.e. | 0.101 | 0.057 | 0.072 | 0.059 | 0.063 | 0.125 | 0.110 | 0.069 | 768 | |
p | 0.600 | 0.256 | 0.999 | 0.263 | 0.737 | 0.218 | 0.616 | 0.904 | ||
pro-NT | β | −0.030 | −0.005 | −0.044 | −0.003 | −0.011 | −0.030 | −0.023 | −0.016 | |
s.e. | 0.031 | 0.018 | 0.022 | 0.018 | 0.019 | 0.037 | 0.034 | 0.021 | 953 | |
p | 0.323 | 0.758 | 0.045 | 0.869 | 0.562 | 0.438 | 0.495 | 0.449 | ||
PENK | β | 0.015 | 0.001 | 0.003 | −0.006 | 0.004 | 0.066 | 0.029 | 0.014 | |
s.e. | 0.021 | 0.012 | 0.015 | 0.012 | 0.013 | 0.025 | 0.023 | 0.014 | 953 | |
p | 0.480 | 0.958 | 0.827 | 0.604 | 0.770 | 0.009 | 0.195 | 0.336 |
LD 1 | LD 2 | LD 3 | LD 4 | LD 5 | LD 6 | LD 7 | LD 8 | n | ||
---|---|---|---|---|---|---|---|---|---|---|
Disinhibition | β | −0.014 | −0.295 | 0.124 | −0.228 | −0.242 | 0.034 | −0.148 | 0.014 | |
s.e. | 0.259 | 0.152 | 0.190 | 0.154 | 0.167 | 0.314 | 0.287 | 0.186 | 572 | |
p | 0.957 | 0.053 | 0.514 | 0.141 | 0.148 | 0.915 | 0.608 | 0.942 | ||
Hunger | β | −0.070 | −0.241 | −0.065 | −0.251 | −0.388 | 0.154 | −0.027 | −0.118 | |
s.e. | 0.263 | 0.155 | 0.193 | 0.157 | 0.170 | 0.319 | 0.292 | 0.190 | 572 | |
p | 0.790 | 0.120 | 0.739 | 0.110 | 0.023 | 0.629 | 0.927 | 0.533 | ||
Restraint | β | −0.554 | −0.089 | 0.017 | −0.256 | −0.176 | 0.176 | 0.544 | −0.178 | |
s.e. | 0.447 | 0.264 | 0.329 | 0.267 | 0.290 | 0.543 | 0.497 | 0.322 | 572 | |
p | 0.216 | 0.736 | 0.958 | 0.339 | 0.544 | 0.746 | 0.274 | 0.580 | ||
Smoking yes/no | OR | 1.188 | 1.105 | 1.292 | 1.100 | 1.024 | 1.054 | 1.058 | 1.299 | |
s.e. | 0.173 | 0.100 | 0.123 | 0.103 | 0.110 | 0.210 | 0.190 | 0.121 | 958 | |
p | 0.321 | 0.320 | 0.038 | 0.364 | 0.827 | 0.803 | 0.767 | 0.030 | ||
Cigarettes (Packyears) | β | 0.021 | 0.140 | 0.070 | 0.145 | 0.072 | −0.204 | 0.051 | 0.073 | |
s.e. | 0.146 | 0.086 | 0.098 | 0.088 | 0.095 | 0.182 | 0.151 | 0.098 | 323 | |
p | 0.883 | 0.105 | 0.476 | 0.102 | 0.450 | 0.262 | 0.734 | 0.455 | ||
Coffee | OR | 0.904 | 1.057 | 0.973 | 1.045 | 1.031 | 0.953 | 0.979 | 1.030 | |
s.e. | 0.160 | 0.092 | 0.114 | 0.094 | 0.101 | 0.194 | 0.175 | 0.111 | 931 | |
p | 0.530 | 0.551 | 0.808 | 0.638 | 0.763 | 0.804 | 0.903 | 0.788 | ||
Alcohol | OR | 1.434 | 1.010 | 1.150 | 1.051 | 1.027 | 1.204 | 0.973 | 0.982 | |
s.e. | 0.198 | 0.114 | 0.144 | 0.117 | 0.126 | 0.238 | 0.230 | 0.142 | 952 | |
p | 0.069 | 0.928 | 0.332 | 0.671 | 0.833 | 0.436 | 0.906 | 0.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epperlein, S.; Gebhardt, C.; Rohde, K.; Chakaroun, R.; Patt, M.; Schamarek, I.; Kralisch, S.; Heiker, J.T.; Scholz, M.; Stumvoll, M.; et al. The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines 2021, 9, 345. https://doi.org/10.3390/biomedicines9040345
Epperlein S, Gebhardt C, Rohde K, Chakaroun R, Patt M, Schamarek I, Kralisch S, Heiker JT, Scholz M, Stumvoll M, et al. The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines. 2021; 9(4):345. https://doi.org/10.3390/biomedicines9040345
Chicago/Turabian StyleEpperlein, Sarah, Claudia Gebhardt, Kerstin Rohde, Rima Chakaroun, Marie Patt, Imke Schamarek, Susan Kralisch, John T. Heiker, Markus Scholz, Michael Stumvoll, and et al. 2021. "The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits" Biomedicines 9, no. 4: 345. https://doi.org/10.3390/biomedicines9040345
APA StyleEpperlein, S., Gebhardt, C., Rohde, K., Chakaroun, R., Patt, M., Schamarek, I., Kralisch, S., Heiker, J. T., Scholz, M., Stumvoll, M., Kovacs, P., Breitfeld, J., & Tönjes, A. (2021). The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines, 9(4), 345. https://doi.org/10.3390/biomedicines9040345