Smart Ring in Clinical Medicine: A Systematic Review
Abstract
1. Introduction
2. Methods
3. Results
3.1. Study Selection and Inclusion
3.2. Study Characteristics
3.3. Sleep Studies
Study Design and Populations of Sleep Studies
3.4. Device Performance in Sleep Assessment
3.4.1. Validation Against Polysomnography
3.4.2. Sleep-Disordered Breathing Detection
3.5. Clinical Applications in Sleep
3.5.1. Perioperative and Acute Care Settings in Sleep Studies
3.5.2. Sleep Interventions
3.6. Special Populations
3.7. Large-Scale Population Sleep Studies
3.8. Non-Sleep Physiological Studies
Study Design and Populations of Non-Sleep Physiological Studies
3.9. Cardiovascular and Metabolic Monitoring
3.9.1. Heart Rate and Heart Rate Variability Validation
3.9.2. Advanced Cardiac Applications
3.9.3. Metabolic Monitoring
3.10. Women’s Health and Reproductive Monitoring
3.10.1. Menstrual Cycle Physiology
3.10.2. Ovulation and Fertility
3.10.3. Pregnancy Monitoring and Prediction
3.11. Disease Detection and Prediction
3.11.1. Infectious Disease Surveillance
3.11.2. Chronic Disease Management
3.12. Mental Health and Cognitive Applications
3.12.1. Depression and Mood Disorders
3.12.2. Stress and Anxiety Management
3.12.3. Cognitive Function
3.13. Physical Activity and Performance
3.13.1. Validation Studies
3.13.2. Athletic Performance and Recovery
3.14. Novel Clinical Applications
3.14.1. Emergency Medicine
3.14.2. Occupational Health
3.14.3. Population Health Surveillance
3.14.4. Methodological Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, A.; Shandhi, M.M.H.; Master, H. Wearable Devices in Cardiovascular Medicine. Circ. Res. 2023, 132, 652–670. [Google Scholar] [CrossRef]
- Lodewyk, K.; Wiebe, M.; Dennett, L.; Larsson, J.; Greenshaw, A.; Hayward, J. Wearables research for continuous monitoring of patient outcomes: A scoping review. PLOS Digit. Health 2025, 4, e0000860. [Google Scholar] [CrossRef]
- Nagappan, A.; Krasniansky, A.; Knowles, M. Patterns of Ownership and Usage of Wearable Devices in the United States, 2020–2022: Survey Study. J. Med. Internet Res. 2024, 26, e56504. [Google Scholar] [CrossRef]
- Dhingra, L.S.; Aminorroaya, A.; Oikonomou, E.K.; Nargesi, A.A.; Wilson, F.P.; Krumholz, H.M.; Khera, R. Use of Wearable Devices in Individuals With or at Risk for Cardiovascular Disease in the US, 2019 to 2020. JAMA Netw. Open 2023, 6, e2316634. [Google Scholar] [CrossRef]
- Adepoju, V.A.; Jamil, S.; Biswas, M.S.; Chowdhury, A.A. Wearable Technology in the Management of Chronic Diseases: A Growing Concern. Chronic. Dis. Transl. Med. 2024, 11, 117–121. [Google Scholar] [CrossRef]
- Seneviratne, M.G.; Connolly, S.B.; Martin, S.S.; Parakh, K. Grains of Sand to Clinical Pearls: Realizing the Potential of Wearable Data. Am. J. Med. 2023, 136, 136–142. [Google Scholar] [CrossRef]
- Kim, K.B.; Baek, H.J. Photoplethysmography in wearable devices: A comprehensive review of technological advances, current challenges, and future directions. Electronics 2023, 12, 2923. [Google Scholar] [CrossRef]
- Morimoto, M.; Nawari, A.; Savic, R.; Marmor, M. Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients. Sensors 2024, 24, 5024. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Bianconi, A.; Sicari, G.; Conni, A.; Lenzi, J.; Tomaiuolo, G.; Zito, F.; Golinelli, D.; Sanmarchi, F. The use of smart rings in health monitoring—A meta-analysis. Appl. Sci. 2024, 14, 10778. [Google Scholar] [CrossRef]
- Volpes, G.; Valenti, S.; Genova, G.; Barà, C.; Parisi, A.; Faes, L.; Busacca, A.; Pernice, R. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Biosensors 2024, 14, 205. [Google Scholar] [CrossRef]
- Sel, K.; Osman, D.; Huerta, N.; Edgar, A.; Pettgrew, R.I.; Jafari, R. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. npj Digit. Med. 2023, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.L.; Harders, M.P.; Hing, W.; Climstein, M.; Coombes, J.S.; Furness, J. Impact of wearable physical activity monitoring devices with exercise prescription or advice in the maintenance phase of cardiac rehabilitation: Systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2019, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Keeler Bruce, L.; González, D.; Dasgupta, S.; Smarr, B.L. Biometrics of complete human pregnancy recorded by wearable devices. npj Digit. Med. 2024, 7, 207. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marevel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Aki, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Robbins, R.; Weaver, M.D.; Sullivan, J.P.; Quan, S.F.; Gilmore, K.; Shaw, S.; Benz, A.; Qadri, S.; Barger, L.K.; Czeisler, C.A.; et al. Accuracy of Three Commercial Wearable Devices for Sleep Tracking in Healthy Adults. Sensors 2024, 24, 6532. [Google Scholar] [CrossRef]
- Svensson, T.; Madhawa, K.; Nt, H.; Chung, U.I.; Svensson, A.K. Validity and reliability of the Oura Ring Generation 3 (Gen3) with Oura sleep staging algorithm 2.0 (OSSA 2.0) when compared to multi-night ambulatory polysomnography: A validation study of 96 participants and 421,045 epochs. Sleep Med. 2024, 115, 251–263. [Google Scholar] [CrossRef]
- Herberger, S.; Aurnhammer, C.; Bauerfeind, S.; Bothe, T.; Penzel, T.; Fietze, I. Performance of wearable finger ring trackers for diagnostic sleep measurement in the clinical context. Sci. Rep. 2025, 15, 9461. [Google Scholar] [CrossRef]
- Kainec, K.A.; Caccavaro, J.; Barnes, M.; Hoff, C.; Berlin, A.; Spencer, R.M.C. Evaluating Accuracy in Five Commercial Sleep-Tracking Devices Compared to Research-Grade Actigraphy and Polysomnography. Sensors 2024, 24, 635. [Google Scholar] [CrossRef]
- Meira e Cruz, M.; Chen, E.; Zhou, Y.; Shu, D.; Zhou, C.; Kryger, M. A wearable ring oximeter for detection of sleep disordered breathing. Respir. Med. 2025, 242, 108092. [Google Scholar] [CrossRef]
- Zhao, R.; Xue, J.; Zhang, X.; Peng, M.; Li, J.; Zhou, B.; Zhao, L.; Penzel, T.; Kryger, M.; Dong, X.S.; et al. Comparison of Ring Pulse Oximetry Using Reflective Photoplethysmography and PSG in the Detection of OSA in Chinese Adults: A Pilot Study. Nat. Sci. Sleep 2022, 14, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.H.; Ong, J.; Thant, A.T.; Koo, C.Y.; Leung, L.; Sia, C.H.; Chan, S.P.; Wong, S.; Lee, C.H. The Belun sleep platform to diagnose obstructive sleep apnea in patients with hypertension and high cardiovascular risk. J. Hypertens. 2023, 41, 1011–1017. [Google Scholar] [CrossRef]
- Debbiche, I.; Wang, C.C.; Gomez-Roas, M.; Foley, O.W.; Grubbs, A.; Barber, E.L. Rest assured: High sleep efficiency reduces postoperative complications and opioid prescriptions in patients undergoing surgeries with gynecologic oncologists. Gynecol. Oncol. 2025, 194, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Donahue, C.C.; Barnes, L.E.; Hertel, J.N.; Resch, J.E. Acute Changes in Sleep Stages Following Concussion in Collegiate Athletes: A Pilot Study. J. Athl. Train. 2025, 60, 707–712. [Google Scholar] [CrossRef]
- Hausenblas, H.A.; Lynch, T.; Hooper, S.; Shrestha, A.; Rosendale, D.; Gu, J. Magnesium-L-threonate improves sleep quality and daytime functioning in adults with self-reported sleep problems: A randomized controlled trial. Sleep Med. X 2024, 8, 100121. [Google Scholar] [CrossRef]
- Breus, M.; Hooper, S.L.; Lynch, T.; Barragan, M.; Hausenblas, H.A. Effectiveness of a grid mattress on adults’ sleep quality and health: A quasi-experimental intervention study. Health Sci. Rep. 2024, 7, e2046. [Google Scholar] [CrossRef]
- Armitage, B.T.; Potts, H.W.W.; Irwin, M.R.; Fisher, A. Exploring the Impact of a Sleep App on Sleep Quality in a General Population Sample: Pilot Randomized Controlled Trial. JMIR Form. Res. 2024, 8, e39554. [Google Scholar] [CrossRef] [PubMed]
- Ju, E.; Guo, Y.; Park, J.I.; Kim, J.; Qu, A.; Lee, J.A. Sleep Quality of Persons with Dementia and Family Caregivers in Korean Americans: Wearable Technology to Study the Dyadic Association. West J. Nurs. Res. 2025, 47, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Soon, C.S.; Chua, X.Y.; Leong, R.L.F.; Ong, J.L.; Massar, S.A.A.; Qin, S.; Chong, K.H.M.; Onnela, J.P.; Chee, M.W.L. A Longitudinal Study of Sleep in University Freshmen: Facilitating and Impeding Factors. Sleep 2025, zsaf156. [Google Scholar] [CrossRef] [PubMed]
- Font, R.; Ortega-Becerra, M.; Tremps, V.; Vicente, A.; Merayo, A.; Mallol, M. Analysis of sleep quality and quantity during a half-season in world-class handball players. Biol. Sport 2025, 42, 247–255. [Google Scholar] [CrossRef]
- Willoughby, A.R.; Vallat, R.; Ong, J.L.; Chee, M.W.L. Insights about travel-related sleep disruption from 1.5 million nights of data. Sleep 2025, 48, zsaf077. [Google Scholar] [CrossRef]
- Viswanath, V.K.; Hartogenesis, W.; Dilchert, S.; Pandya, L.; Hecht, F.M.; Mason, A.E.; Wang, E.J.; Smarr, B.L. Five million nights: Temporal dynamics in human sleep phenotypes. npj Digit. Med. 2024, 7, 150. [Google Scholar] [CrossRef]
- Liang, T.; Yilmaz, G.; Soon, C.S. Deriving Accurate Nocturnal Heart Rate, rMSSD and Frequency HRV from the Oura Ring. Sensors 2024, 24, 7475. [Google Scholar] [CrossRef]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef] [PubMed]
- van Steijn, N.J.; Pepplinkhuizen, S.; Postema, P.G.; Knops, R.E.; Winter, M.M. Ventricular arrhythmia detection with a wearable ring-type photoplethysmography sensor: A feasibility study. Heart Rhythm. 2025, 22, 3082–3089. [Google Scholar] [CrossRef]
- Kim, J.; Chang, S.A.; Park, S.W. First-in-Human Study for Evaluating the Accuracy of Smart Ring Based Cuffless Blood Pressure Measurement. J. Korean Med. Sci. 2024, 39, e18. [Google Scholar] [CrossRef]
- Sanai, F.; Sahid, A.S.; Huvanandana, J.; Spoa, S.; Boyle, L.H.; Hribar, J.; Wang, D.T.Y.; Kwan, B.; Colagiuri, S.; Cox, S.J.; et al. Evaluation of a Continuous Blood Glucose Monitor: A Novel and Non-Invasive Wearable Using Bioimpedance Technology. J. Diabetes Sci. Technol. 2023, 17, 336–344. [Google Scholar] [CrossRef]
- Mason, A.E.; Kasl, P.; Soltani, S.; Green, A.; Hartogensis, W.; Dilchert, S.; Chowdhary, A.; Pandya, L.S.; Siwik, C.J.; Foster, S.L.; et al. Elevated body temperature is associated with depressive symptoms: Results from the TemPredict Study. Sci. Rep. 2024, 14, 1884. [Google Scholar] [CrossRef]
- Alzueta, E.; Gombert-Labedens, M.; Javitz, H.; Yuksel, D.; Perez-Amparan, E.; Camacho, L.; Kiss, O.; de Zambotti, M.; Sattari, N.; Alejandro-Pena, A.; et al. Menstrual Cycle Variations in Wearable-Detected Finger Temperature and Heart Rate, But Not in Sleep Metrics, in Young and Midlife Individuals. J. Biol. Rhythms. 2024, 39, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Maijala, A.; Kinnunen, H.; Koskimäki, H.; Jämsä, T.; Kangas, M. Nocturnal finger skin temperature in menstrual cycle tracking: Ambulatory pilot study using a wearable Oura ring. BMC Womens Health 2019, 19, 150. [Google Scholar] [CrossRef] [PubMed]
- Dupuit, M.; Barlier, K.; Tranchard, B.; Toussaint, J.F.; Antero, J.; Pla, R. Heart Rate Variability Measurements Across the Menstrual Cycle and Oral Contraceptive Phases in Two Olympian Female Swimmers: A Case Report. Sports 2025, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Thigpen, N.; Patel, S.; Zhang, X. Oura Ring as a Tool for Ovulation Detection: Validation Analysis. J. Med. Internet Res. 2025, 27, e60667. [Google Scholar] [CrossRef]
- Basavaraj, C.; Grant, A.D.; Aras, S.G.; Erickson, E.N. Deep learning model using continuous skin temperature data predicts labor onset. BMC Pregnancy Childbirth 2024, 24, 777. [Google Scholar] [CrossRef]
- Erickson, E.N.; Gotlieb, N.; Pereira, L.M.; Myatt, L.; Mosquera-Lopez, C.; Jacobs, P.G. Predicting labor onset relative to the estimated date of delivery using smart ring physiological data. npj Digit. Med. 2023, 6, 153. [Google Scholar] [CrossRef]
- Conroy, B.; Silva, I.; Mehraei, G.; Damiano, R.; Gross, B.; Salvati, E.; Feng, T.; Schneider, J.; Olson, N.; Rizzo, A.G.; et al. Real-time infection prediction with wearable physiological monitoring and AI to aid military workforce readiness during COVID-19. Sci. Rep. 2022, 12, 3797. [Google Scholar] [CrossRef]
- Hadid, A.; McDonald, E.G.; Ding, Q.; Phillipp, C.; Trottier, A.; Dixon, P.C.; Jlassi, O.; Cheng, M.P.; Papenburg, J.; Libman, M.; et al. Development of machine learning prediction models for systemic inflammatory response following controlled exposure to a live attenuated influenza vaccine in healthy adults using multimodal wearable biosensors in Canada: A single-centre, prospective controlled trial. Lancet Digit. Health 2025, 7, 100886. [Google Scholar] [CrossRef]
- Hirten, R.P.; Danieletto, M.; Sanchez-Mayor, M.; Whang, J.K.; Lee, K.W.; Landell, K.; Zweig, M.; Helmus, D.; Fuchs, T.J.; Fayad, Z.A.; et al. Physiological Data Collected From Wearable Devices Identify and Predict Inflammatory Bowel Disease Flares. Gastroenterology 2025, 168, 939–951.e5. [Google Scholar] [CrossRef]
- Ortiz, A.; Halabi, R.; Alda, M.; DeShaw, A.; Husain, M.I.; Nunes, A.; O’Donovan, C.; Patterson, R.; Mulsant, B.H.; Hintze, A. Day-to-day variability in activity levels detects transitions to depressive symptoms in bipolar disorder earlier than changes in sleep and mood. Int. J. Bipolar. Disord. 2025, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Reithe, H.; Marty, B.; Torrado, J.C.; Førsund, E.; Husebo, B.S.; Erdal, A.; Kverneng, S.U.; Sheard, E.; Tzoulis, C.; Patrascu, M. Cross-evaluation of wearable data for use in Parkinson’s disease research: A free-living observational study on Empatica E4, Fitbit Sense, and Oura. BioMed. Eng. OnLine 2025, 24, 22. [Google Scholar] [CrossRef]
- Borelli, J.L.; Wang, Y.; Li, F.H.; Russo, L.N.; Tironi, M.; Yamashita, K.; Zhou, E.; Lai, J.; Nguyen, B.; Azimi, I.; et al. Detection of Depressive Symptoms in College Students Using Multimodal Passive Sensing Data and Light Gradient Boosting Machine: Longitudinal Pilot Study. JMIR Form. Res. 2025, 9, e67964. [Google Scholar] [CrossRef]
- Fudolig, M.I.; Bloomfield, L.S.P.; Price, M.; Bird, Y.M.; Hidalgo, J.E.; Kim, J.N.; Llorin, J.; Lovato, J.; McGinnis, E.W.; McGinnis, R.S.; et al. The Two Fundamental Shapes of Sleep Heart Rate Dynamics and Their Connection to Mental Health in College Students. Digit. Biomark. 2024, 8, 120–131. [Google Scholar] [CrossRef]
- Balsam, D.; Bounds, D.T.; Rahmai, A.M.; Nyamathi, A. Evaluating the Impact of an App-Delivered Mindfulness Meditation Program to Reduce Stress and Anxiety During Pregnancy: Pilot Longitudinal Study. JMIR Pediatr. Parent. 2023, 6, e53933. [Google Scholar] [CrossRef]
- Croghan, I.T.; Hurt, R.T.; Fokken, S.C.; Fischer, K.M.; Lindeen, S.A.; Schroeder, D.R.; Ganesh, R.; Ghosh, K.; Bausek, N.; Bauer, B.A. Stress Resilience Program for Health Care Professionals During a Pandemic: A Pilot Program. Workplace Health Saf. 2023, 71, 173–180. [Google Scholar] [CrossRef]
- Rovini, E.; Galperti, G.; Manera, V.; Mancioppi, G.; Fiorini, L.; Gros, A.; Robert, P.; Cavallo, F. A wearable ring-shaped inertial system to identify action planning impairments during reach-to-grasp sequences: A pilot study. J. Neuroeng. Rehabil. 2021, 18, 118. [Google Scholar] [CrossRef]
- Qin, S.; Ng, E.K.K.; Soon, C.S.; Chua, X.Y.; Zhou, J.H.; Koh, W.P.; Chee, M.W.L. Association between objectively measured, multidimensional sleep health and cognitive function in older adults: Cross-sectional wearable tracker study. Sleep Med. 2025, 132, 106569. [Google Scholar] [CrossRef]
- Kristiansson, E.; Fridolfsson, J.; Arvidsson, D.; Holmäng, A.; Börjesson, M.; Andersson-Hall, U. Validation of Oura ring energy expenditure and steps in laboratory and free-living. BMC Med. Res Methodol. 2023, 23, 50. [Google Scholar] [CrossRef]
- Niela-Vilen, H.; Azimi, I.; Suorsa, K.; Sarhaddi, F.; Stenholm, S.; Liljeberg, P.; Rahmani, A.M.; Axelin, A. Comparison of Oura Smart Ring Against ActiGraph Accelerometer for Measurement of Physical Activity and Sedentary Time in a Free-Living Context. Comput. Inform. Nurs. 2022, 40, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Bigalke, J.A.; Lee, K.M.; Bigalke, J.R.; Scullin, M.K.; Gallucci, A.R.; Carter, J.R. Longitudinal assessment of objective sleep and power output in Division I collegiate baseball athletes. Sleep Health 2025, 11, 241–247. [Google Scholar] [CrossRef]
- Smith, E.S.; Kuikman, M.; Rusell, S.; Gardiner, C.L.; Halson, S.L.; Stellingwerff, T.; Harris, R.; Mckay, A.K.A.; Burker, L.M. 24-Hour Low Energy Availability Induced by Diet or Exercise Exhibits Divergent Influences on Sleep and Recovery Indices among Female and Male Cyclists. Med. Sci. Sports Exerc. 2025, 57, 2564–2576. [Google Scholar] [CrossRef]
- Lee, S.; Song, Y.; Lee, J.; Oh, J.; Lim, T.H.; Ahn, C.; Kim, I.Y. Development of Smart-Ring-Based Chest Compression Depth Feedback Device for High Quality Chest Compressions: A Proof-of-Concept Study. Biosensors 2021, 11, 35. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, S.; Lee, J.; Oh, J.; Song, Y.; Kim, I.Y.; Kang, H. Impact of a Smart-Ring-Based Feedback System on the Quality of Chest Compressions in Adult Cardiac Arrest: A Randomized Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 5408. [Google Scholar] [CrossRef]
- Kubala, A.G.; Roma, P.G.; Jameson, J.T.; Sessoms, P.H.; Chinoy, E.D.; Rosado, L.R.; Viboch, T.B.; Schrom, B.J.; Rizeq, H.N.; Gordy, P.S.; et al. Advancing a U.S. navy shipboard infrastructure for sleep monitoring with wearable technology. Appl. Ergon. 2024, 117, 104225. [Google Scholar] [CrossRef]
- de Vries, H.; Kamphuis, W.; van der Schans, C.; Sanderman, R.; Oldenhuis, H. Trends in Daily Heart Rate Variability Fluctuations Are Associated with Longitudinal Changes in Stress and Somatisation in Police Officers. Healthcare 2022, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Kasl, P.; Keeler Bruce, L.; Hartogensis, W.; Dasgupta, S.; Pandya, L.S.; Dilchert, S.; Hecht, F.M.; Gupta, A.; Altintas, I.; Mason, A.E.; et al. Utilizing Wearable Device Data for Syndromic Surveillance: A Fever Detection Approach. Sensors 2024, 24, 1818. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Heris, Z.; Fortier, M.A.; Rahmani, A.M.; Sharifiheris, H.; Bender, M. Feasibility of continuous smart health monitoring in pregnant population: A mixed-method approach. PLOS Digit. Health 2024, 3, e0000517. [Google Scholar] [CrossRef] [PubMed]
- Oura Health Ltd. Explore the Technology in Oura Ring 4. 2024. Available online: https://ouraring.com/blog/technology-in-oura-ring-4/ (accessed on 16 November 2025).
- Cao, R.; Azimi, I.; Sarhaddi, F.; Niela-Vilen, H.; Axelin, A.; Liljeberg, P.; Rahmani, A.M. Accuracy Assessment of Oura Ring Nocturnal Heart Rate and Heart Rate Variability in Comparison With Electrocardiography in Time and Frequency Domains: Comprehensive Analysis. J. Med. Internet Res. 2022, 24, e27487. [Google Scholar] [CrossRef]
- Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site. Front. Physiol. 2019, 10, 198. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, Z.; Gou, X.; Liu, H.; Wang, W. Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter. BioMed. Eng. OnLine 2014, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Z.; Zhang, Q.; Wang, G. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering. Sensors 2019, 19, 3312. [Google Scholar] [CrossRef] [PubMed]
- Altini, M.; Kinnunen, H. The Promise of Sleep: A Multi-Sensor Approach for Accurate Sleep Stage Detection Using the Oura Ring. Sensors 2021, 21, 4302. [Google Scholar] [CrossRef]
- Doherty, C.; Baldwin, M.; Keogh, A.; Caulfield, B.; Argent, R. Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement. Sports Med. 2024, 54, 2907–2926. [Google Scholar] [CrossRef] [PubMed]

| Database: MEDLINE (Through PubMed) |
|---|
| #1 “smart ring”[tiab] OR “ring-shaped wearable”[tiab] OR “finger-worn”[tiab]: 61 #2 “Oura”[tiab] OR “Circul”[tiab] OR “CART-I”[tiab]: 143 #3 #1 OR #2: 188 #4 #3 AND English[Lang]: 186 |
| Database: Embase |
| #1 ‘smart ring’:ab,ti,kw OR ‘ring-shaped wearable’:ab,ti,kw OR ‘finger-worn’:ab,ti,kw: 549 #2 ‘Oura’:ab,ti,kw OR ‘Circul’:ab,ti,kw OR ‘CART-I’:ab,ti,kw: 267 #3 #1 OR #2: 790 #4 #3 AND ([article]/lim OR [article in press]/lim OR [review]/lim) AND [English]/lim: 371 |
| Database: Cochrane Library |
| #1 ‘smart ring’:ab,ti,kw OR ‘ring-shaped wearable’:ab,ti,kw OR ‘finger-worn’:ab,ti,kw: 32 #2 ‘Oura’:ab,ti,kw OR ‘Circul’:ab,ti,kw OR ‘CART-I’:ab,ti,kw: 54 #3 #1 OR #2: 82 |
| Database: Web of Science |
| #1 ab = (“smart ring” OR “ring-shaped wearable” OR “finger-worn”): 76 #2 ab = (“Oura” OR “Circul” OR “CART-I”): 118 #3 #1 OR #2: 186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, E.J.; Bang, C.S.; Lee, J.J.; Baik, G.H. Smart Ring in Clinical Medicine: A Systematic Review. Biomimetics 2025, 10, 819. https://doi.org/10.3390/biomimetics10120819
Gong EJ, Bang CS, Lee JJ, Baik GH. Smart Ring in Clinical Medicine: A Systematic Review. Biomimetics. 2025; 10(12):819. https://doi.org/10.3390/biomimetics10120819
Chicago/Turabian StyleGong, Eun Jeong, Chang Seok Bang, Jae Jun Lee, and Gwang Ho Baik. 2025. "Smart Ring in Clinical Medicine: A Systematic Review" Biomimetics 10, no. 12: 819. https://doi.org/10.3390/biomimetics10120819
APA StyleGong, E. J., Bang, C. S., Lee, J. J., & Baik, G. H. (2025). Smart Ring in Clinical Medicine: A Systematic Review. Biomimetics, 10(12), 819. https://doi.org/10.3390/biomimetics10120819

