Adsorption-Based Low-Temperature NO2 Pollution Control for a Sustainable Future
1. Introduction
2. Limitations of Conventional NO2 Control
3. Advances in Adsorbent Materials
3.1. Activated Carbons (ACs)
3.2. Silicas
3.3. Zeolites
3.4. Metal–Organic Frameworks (MOFs) and Covalent–Organic Frameworks (COFs)
| Adsorbents | Adsorption Test Conditions | NO2 Adsorption Capacity (mmol/g) | Reference |
|---|---|---|---|
| Activated carbons | |||
| Commercial BAX-1500 modified with urea | 1000 ppm NO2, dry air (dry)/moist air with 70% RH (wet), 0.45 L/min | 1.43 (dry); 3.04 (wet) | [42] |
| Commercial BAX-1500 modified with copper and hydrazine | 1000 ppm NO2, dry air, 0.45 L/min | 4.48 | [43] |
| MOF-derived carbon | 1000 ppm NO2, He (dry)/500 ppm NO2 and 80–85% RH (wet), 200 mL/min | 4.97 (dry); 6.70 (wet) | [44] |
| Silicas | |||
| SBA-15 | 1000 ppm NO2, N2, 225 mL/min | 0.46 | [20] |
| NH2-SBA-15 | 1000 ppm NO2, N2, 225 mL/min | 2.70 | |
| Cerium–zirconium mixed oxides modified with SBA-15 | 1000 ppm NO2, N2, 225 mL/min | 6.91 | [18] |
| Copper nanoparticles modified with KCC-1 | 500 ppm NO2, dry air, 200 mL/min | 3.63 | [17] |
| Zeolites | |||
| CHA zeolite Co2+-2-L | 1000 ppm NO2, 60 mL/min | 4.65 | [24] |
| CHA zeolite Ni2+-2-L | 1000 ppm NO2, 60 mL/min | 4.06 | |
| CHA zeolite Co2+-6-L | 1000 ppm NO2, 60 mL/min | 3.25 | |
| CHA zeolite Ni2+-6-L | 1000 ppm NO2, 60 mL/min, | 2.71 | |
| HKUST-1 | 1000 ppm NO2, dry air (dry)/moist air with 70% RH (wet), 225 mL/min | 2.30 (dry); 1.17 (wet) | [45] |
| MOFs | |||
| UiO-66 | 1000 ppm NO2, dry air (dry)/moist air with 71% RH (wet), 225 mL/min | 1.59 (dry); 0.87 (wet) | [46] |
| UiO-67 | 1000 ppm NO2, dry air (dry)/moist air with 71% RH (wet), 225 mL/min | 1.72 (dry); 2.57 (wet) | |
| MOF-808 | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 1.20 (dry); 0.83 (wet) | [36] |
| 808-IPA | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 3.00 (dry); 3.35 (wet) | |
| 808-OHIPA | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 1.28 (dry); 0.67 (wet) | |
| 808-NH2IPA | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 3.37 (dry); 3.22 (wet) | |
| 808-NO2IPA | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 2.72 (dry); 3.54 (wet) | |
| 808-PYDC | 250 ppm NO2, dry air (dry)/moist air with 80% RH (wet), 20 mL/min | 3.52 (dry); 0.70 (wet) | |
| Al-PMOF | 100 ppm NO2, dry air (dry)/moist air with 60% RH (wet), 200 mL/min | 1.85 (dry); 3.61 (wet) | [35] |
| Ga-PMOF | 100 ppm NO2, dry air, 200 mL/min | 1.13 | |
| In-PMOF | 100 ppm NO2, dry air, 200 mL/min | 0.90 | |
| PCN-222 | 100 ppm NO2, dry air, 200 mL/min | 0.52 | |
| PCN-224 | 100 ppm NO2, dry air, 200 mL/min | 1.36 | |
| Al-PMOF (Co) | 500 ppm NO2, dry air, 200 mL/min | 1.38 | [47] |
| Al-PMOF (Ni) | 500 ppm NO2, dry air, 200 mL/min | 2.30 | |
| Al-PMOF(Ni2Co2) | 100 ppm NO2, dry air, 200 mL/min | 3.69 | [48] |
| Ni-BDC DMOF | 1000 ppm NO2, dry air (dry)/moist air with 86% RH (wet), 200 mL/min | 1.0 (dry); 0.03 (wet) | [49] |
| Ni-DM DMOF | 1000 ppm NO2, dry air (dry)/moist air with 86% RH (wet), 200 mL/min | 1.1 (dry); 0.4 (wet) | |
| Ni-TM DMOF | 1000 ppm NO2, dry air (dry)/moist air with 86% RH (wet), 200 mL/min | 2.2 (dry); 1.8 (wet) | |
| NKU-100 | 2500 ppm NO2, N2, 40 mL/min | 5.80 | [50] |
| MFM-305 | 500 ppm NO2, 80 mL/min | 2.38 | [51] |
| MFM-305-CH3 | 500 ppm NO2, 80 mL/min | 6.58 | |
| COFs | |||
| CTF-DCP-wash | 500 ppm NO2, dry air (dry)/moist air with 60% RH (wet), 200 mL/min | 6.11 (dry), 4.24 (wet) | [34] |
| CTF-DCP-Cu | 500 ppm NO2, dry air (dry)/moist air with 60% RH (wet), 200 mL/min | 4.27 (dry), 8.97 (wet) | |
| CTF-DCP-Co | 500 ppm NO2, dry air (dry)/moist air with 60% RH (wet), 200 mL/min | 4.47 (dry), 8.47 (wet) | |
| CTF-DCP-Ni | 500 ppm NO2, dry air (dry)/moist air with 60% RH (wet), 200 mL/min | 5.20 (dry), 8.63 (wet) | |
4. Application-Specific Strategies
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baukal, C. Everything You Need to Know About NOx: Controlling and minimizing pollutant emissions is critical for meeting air quality regulations. Met. Finish. 2005, 103, 18–24. [Google Scholar] [CrossRef]
- Cesar, A.C.G.; Carvalho, J.A.; Nascimento, L.F.C. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city. Braz. J. Med. Biol. Res. 2015, 48, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, P.; Atkinson, R. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environ. Int. 2020, 144, 105998. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Q.; E, J.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Epling, W.S.; Campbell, L.E.; Yezerets, A.; Currier, N.W.; Parks, J.E. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev.-Sci. Eng. 2004, 46, 163–245. [Google Scholar] [CrossRef]
- Roy, S.; Baiker, A. NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chem. Rev. 2009, 109, 4054–4091. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Dorge, S.; Limousy, L.; Matei Ghimbeu, C.; Ouederni, A. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chim. 2015, 18, 63–74. [Google Scholar] [CrossRef]
- Belala, Z.; Belhachemi, M.; Jeguirim, M. Activated Carbon Prepared from Date Pits for the Retention of NO2 at Low Temperature. Int. J. Chem. React. Eng. 2014, 12, 717–726. [Google Scholar] [CrossRef]
- Pietrzak, R. Active Carbons Obtained from Bituminous Coal for NO2 Removal under Dry and Wet Conditions at Room Temperature. Energy Fuel 2009, 23, 3617–3624. [Google Scholar] [CrossRef]
- Jeguirim, M.; Belhachemi, M.; Limousy, L.; Bennici, S. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry—A review. Chem. Eng. J. 2018, 347, 493–504. [Google Scholar] [CrossRef]
- Bader, N.; Sager, U.; Schneiderwind, U.; Ouederni, A. Foam and granular olive stone-derived activated carbons for NO2 filtration from indoor air. J. Environ. Chem. Eng. 2019, 7, 103005. [Google Scholar] [CrossRef]
- Nowicki, P.; Pietrzak, R. Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions. Bioresour. Technol. 2010, 101, 5802–5807. [Google Scholar] [CrossRef] [PubMed]
- Vellingiri, K.; Choudhary, V.; Kumar, S.; Philip, L. Sorptive removal versus catalytic degradation of aqueous BTEX: A comprehensive review from the perspective of life-cycle assessment. Environ. Sci. Water Res. Technol. 2022, 8, 1359–1390. [Google Scholar] [CrossRef]
- Larasati, A.; Fowler, G.D.; Graham, N.J.D. Insights into chemical regeneration of activated carbon for water treatment. J. Environ. Chem. Eng. 2021, 9, 105555. [Google Scholar] [CrossRef]
- Yu, J.; Meng, Z.; Chi, C.; Gao, X.; Chen, B.; Zhu, B.; Qiao, K. Low temperature pickling regeneration process for remarkable enhancement in Cu(II) adsorptivity over spent activated carbon fiber. Chemosphere 2021, 281, 130868. [Google Scholar] [CrossRef]
- Sun, M.; Hanif, A.; Wang, T.; Yang, C.; Tsang, D.C.W.; Shang, J. Chrysanthemum flower like silica with highly dispersed Cu nanoparticles as a high-performance NO2 adsorbent. J. Hazard. Mater. 2021, 418, 126400. [Google Scholar] [CrossRef]
- Levasseur, B.; Ebrahim, A.M.; Burress, J.; Bandosz, T.J. Interactions of NO2 at ambient temperature with cerium-zirconium mixed oxides supported on SBA-15. J. Hazard. Mater. 2011, 197, 294–303. [Google Scholar] [CrossRef]
- Levasseur, B.; Ebrahim, A.M.; Bandosz, T.J. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions. J. Colloid Interface Sci. 2012, 377, 347–354. [Google Scholar] [CrossRef]
- Levasseur, B.; Ebrahim, A.M.; Bandosz, T.J. Interactions of NO2 with amine-functionalized SBA-15: Effects of synthesis route. Langmuir 2012, 28, 5703–5714. [Google Scholar] [CrossRef]
- Patti, A.; Mackie, A.D.; Zelenak, V.; Siperstein, F.R. One-pot synthesis of amino functionalized mesoporous silica materials: Using simulations to understand transitions between different structures. J. Mater. Chem. 2009, 19, 724–732. [Google Scholar] [CrossRef]
- Grisolia, A.; Dell’Olio, G.; Spadafora, A.; De Santo, M.; Morelli, C.; Leggio, A.; Pasqua, L. Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation. Molecules 2023, 28, 5105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, W.; Zhu, L.; Ye, H.; Liu, H. Polymer–silica hybrid self-healing nano/microcapsules with enhanced thermal and mechanical stability. RSC Adv. 2019, 9, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ku, C.; Tao, Z.; Wang, T.; Wen, C.; Hanif, A.; Wang, C.; Gu, Q.; Sit, P.; Shang, J. Ambient temperature NO2 removal by adsorption on transition metal ion-exchanged chabazite zeolites. Results Eng. 2023, 18, 101134. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Arai, T.; Kumagai, M. Adsorption Separation of Low Concentrations of CO2 and NO2 by Synthetic Zeolites. Energy Fuels 1998, 12, 1055–1060. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Arai, T.; Kumagai, M. The Separate Removal of Trace 14CO2 and Moist NOx from Off-gases by Adsorption on H-type Mordenite. Adsorpt. Sci. Technol. 1999, 17, 255–268. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Du, F.; Yu, Q.; Liang, X. A two-step organic modification strategy for improving surface hydrophobicity of zeolites. Adv. Powder Technol. 2023, 34, 104228. [Google Scholar] [CrossRef]
- Wang, C.; Guo, H.; Leng, S.; Yu, J.; Feng, K.; Cao, L.; Huang, J. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 330–348. [Google Scholar] [CrossRef]
- Nada, M.H.; Larsen, S.C.; Gillan, E.G. Mechanochemically-assisted solvent-free and template-free synthesis of zeolites ZSM-5 and mordenite. Nanoscale Adv. 2019, 1, 3918–3928. [Google Scholar] [CrossRef]
- Jang, E.; Hong, S.; Kim, E.; Choi, N.; Cho, S.J.; Choi, J. Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation. J. Membr. Sci. 2018, 549, 46–59. [Google Scholar] [CrossRef]
- Han, X.; Hong, Y.; Ma, Y.; Lu, W.; Li, J.; Lin, L.; Sheveleva, A.M.; Tuna, F.; McInnes, E.J.L.; Dejoie, C.; et al. Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal-Organic Framework Material. J. Am. Chem. Soc. 2020, 142, 15235–15239. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, X.; Zhang, X.; Sheveleva, A.M.; Cheng, Y.; Tuna, F.; McInnes, E.J.L.; McCormick McPherson, L.J.; Teat, S.J.; Daemen, L.L.; et al. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal-organic framework. Nat. Chem. 2019, 11, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Godfrey, H.G.W.; Briggs, L.; Davies, A.J.; Cheng, Y.; Daemen, L.L.; Sheveleva, A.M.; Tuna, F.; McInnes, E.J.L.; Sun, J.; et al. Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. Nat. Mater. 2018, 17, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Kong, M.; Tao, Z.; Yang, C.; Shang, S.; Gu, Q.; Tsang, D.C.W.; Li, L.; Shang, J. Efficient adsorption removal of NO2 by covalent triazine frameworks with fine-tuned binding sites. J. Hazard. Mater. 2023, 441, 129962. [Google Scholar] [CrossRef]
- Shang, S.; Wen, C.; Yang, C.; Tian, Y.; Wang, C.; Shang, J. The low-temperature NO2 removal by tailoring metal node in porphyrin-based metal-organic frameworks. Sci. Total Environ. 2021, 801, 149710. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Li, L.; Zhao, Y.; Su, R.; Liang, G.; Yang, B.; Miao, Y.; Meng, W.; Luan, Z.; et al. NO2 Removal under Ambient Conditions by Nanoporous Multivariate Zirconium-Based Metal–Organic Framework. ACS Appl. Nano Mater. 2020, 3, 11442–11454. [Google Scholar] [CrossRef]
- Klimakow, M.; Klobes, P.; Thünemann, A.F.; Rademann, K.; Emmerling, F. Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chem. Mater. 2010, 22, 5216–5221. [Google Scholar] [CrossRef]
- Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H. A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981. [Google Scholar] [CrossRef]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-synthetic modification of metal–organic frameworks toward applications. Adv. Funct. Mater. 2021, 31, 2006291. [Google Scholar] [CrossRef]
- Bashkova, S.; Bandosz, T.J. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. J. Colloid Interface Sci. 2009, 333, 97–103. [Google Scholar] [CrossRef]
- Kiani, S.S.; Farooq, A.; Faiz, Y.; Shah, A.; Ahmad, M.; Irfan, N.; Iqbal, M.; Usman, A.B.; Mahmood, A.; Nawaz, M.; et al. Investigation of Cu/Zn/Ag/Mo-based impregnated activated carbon for the removal of toxic gases, synthesized in aqueous media. Diam. Relat. Mater. 2021, 111, 108179. [Google Scholar] [CrossRef]
- Sun, M.; Hanif, A.; Wang, T.; Gu, Q.; Shang, J. Ambient temperature NO2 removal by reversible NO2 adsorption on copper-based metal-organic frameworks (MOFs)-derived nanoporous adsorbents. Sep. Purif. Technol. 2023, 314, 123563. [Google Scholar] [CrossRef]
- Levasseur, B.; Petit, C.; Bandosz, T.J. Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. ACS Appl. Mater. Interfaces 2010, 2, 3606–3613. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, A.M.; Levasseur, B.; Bandosz, T.J. Interactions of NO2 with Zr-based MOF: Effects of the size of organic linkers on NO2 adsorption at ambient conditions. Langmuir 2013, 29, 168–174. [Google Scholar] [CrossRef]
- Shang, S.; Yang, C.; Wang, C.; Qin, J.; Li, Y.; Gu, Q.; Shang, J. Transition-Metal-Containing Porphyrin Metal-Organic Frameworks as pi-Backbonding Adsorbents for NO2 Removal. Angew. Chem. Int. Ed. 2020, 59, 19680–19683. [Google Scholar] [CrossRef]
- Shang, S.; Yang, C.; Tian, Y.; Tao, Z.; Smith, M.; Zhang, H.; Zhang, L.; Li, L.; Gu, Q.; Zhou, H.-C.; et al. Designing multivariate porphyrin-based metal-organic frameworks with Ni/Co dual-metal atom sites for cooperative NO2 capture and NO retention. Sep. Purif. Technol. 2023, 320, 124080. [Google Scholar] [CrossRef]
- Shang, S.; Tian, Y.; Yang, C.; Wang, C.; Chen, X.; Ye, D.; Shang, J. Ambient temperature NO2 removal by adsorption on robust DMOFs: Regulating water stability, acid stability, and NO2 capacity by methyl functionalization. Chem. Eng. J. 2023, 477, 147255. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Lu, W.; Wang, K.; Chen, Y.; Zhang, X.; Lin, L.; Han, X.; Teat, S.J.; Frogley, M.D.; et al. A {Ni12}-Wheel-Based Metal-Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angew. Chem. Int. Ed. 2022, 61, e202115585. [Google Scholar] [CrossRef]
- Wang, Z.; Sheveleva, A.M.; Lee, D.; Chen, Y.; Iuga, D.; Franks, W.T.; Ma, Y.; Li, J.; Li, L.; Cheng, Y.; et al. Modulation of Uptake and Reactivity of Nitrogen Dioxide in Metal-Organic Framework Materials. Angew. Chem. Int. Ed. 2023, 62, e202302602. [Google Scholar] [CrossRef]
- Peterson, G.W.; Mahle, J.J.; DeCoste, J.B.; Gordon, W.O.; Rossin, J.A. Extraordinary NO2 Removal by the Metal-Organic Framework UiO-66-NH2. Angew. Chem. Int. Ed. 2016, 55, 6235–6238. [Google Scholar] [CrossRef]
- Ma, Y.; Han, X.; Xu, S.; Wang, Z.; Li, W.; da Silva, I.; Chansai, S.; Lee, D.; Zou, Y.; Nikiel, M.; et al. Atomically Dispersed Copper Sites in a Metal-Organic Framework for Reduction of Nitrogen Dioxide. J. Am. Chem. Soc. 2021, 143, 10977–10985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, T.; Shang, J. Adsorption-Based Low-Temperature NO2 Pollution Control for a Sustainable Future. Purification 2025, 1, 8. https://doi.org/10.3390/purification1030008
Wang Y, Wang T, Shang J. Adsorption-Based Low-Temperature NO2 Pollution Control for a Sustainable Future. Purification. 2025; 1(3):8. https://doi.org/10.3390/purification1030008
Chicago/Turabian StyleWang, Yuying, Tianqi Wang, and Jin Shang. 2025. "Adsorption-Based Low-Temperature NO2 Pollution Control for a Sustainable Future" Purification 1, no. 3: 8. https://doi.org/10.3390/purification1030008
APA StyleWang, Y., Wang, T., & Shang, J. (2025). Adsorption-Based Low-Temperature NO2 Pollution Control for a Sustainable Future. Purification, 1(3), 8. https://doi.org/10.3390/purification1030008

