Methodologies Used to Determine the Main Markers of Indoor Air Quality
Abstract
:1. Introduction
2. Main IAQ Markers and Analysis Methodologies
2.1. Formaldehyde (HCHO)
2.2. Polycyclic Aromatic Hydrocarbons (PAHs)
2.3. Radon (Rn)
2.4. Nitrogen Dioxide (NO2)
2.5. Carbon Monoxide (CO)
2.6. Volatile Organic Compounds (VOCs)
3. Systems Adopted to Improve IAQ
3.1. Ventilation
3.2. Air Purifiers with High-Efficiency Particulate Air (HEPA) Filters
3.3. Humidity Control
3.4. Eco-Sustainable Furniture and Materials
4. Integration of Low-Cost Sensors and Artificial Intelligence in Indoor Air Quality Monitoring
5. Conclusions
Funding
Conflicts of Interest
References
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef]
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 28 January 2025).
- Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/Outdoor Relationships of Particulate Matter in Domestic Homes with Roadside, Urban and Rural Locations. Atmos. Environ. 2000, 34, 2603–2612. [Google Scholar] [CrossRef]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Fratianni, A.; Avino, P. Indoor Air Quality Levels in Schools: Role of Student Activities and No Activities. Int. J. Environ. Res. Public Health 2020, 17, 6695. [Google Scholar] [CrossRef] [PubMed]
- Settimo, G.; Yu, Y.; Gola, M.; Buffoli, M.; Capolongo, S. Challenges in IAQ for Indoor Spaces: A Comparison of the Reference Guideline Values of Indoor Air Pollutants from the Governments and International Institutions. Atmosphere 2023, 14, 633. [Google Scholar] [CrossRef]
- Wei, G.; Yu, X.; Fang, L.; Wang, Q.; Tanaka, T.; Amano, K.; Yang, X. A Review and Comparison of the Indoor Air Quality Requirements in Selected Building Standards and Certifications. Build. Environ. 2022, 226, 109709. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of Relationship between Indoor and Outdoor Particles: I/O Ratio, Infiltration Factor and Penetration Factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S.G. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef]
- Chenari, B.; Dias Carrilho, J.; Gameiro Da Silva, M. Towards Sustainable, Energy-Efficient and Healthy Ventilation Strategies in Buildings: A Review. Renew. Sustain. Energy Rev. 2016, 59, 1426–1447. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.-H. An Investigation on Hazardous and Odorous Pollutant Emission during Cooking Activities. J. Hazard. Mater. 2011, 188, 443–454. [Google Scholar] [CrossRef]
- Settimo, G.; Avino, P. State-of-Art of the Legislation on Odour Emissions with a Focus on the Italian Studies. Environ. Pollut. 2024, 348, 123525. [Google Scholar] [CrossRef]
- Lovrić, M.; Gajski, G.; Fernández-Agüera, J.; Pöhlker, M.; Gursch, H.; Lovrić, M.; Switters, J.; Borg, A.; Mureddu, F.; Auguštin, D.H.; et al. Evidence Driven Indoor Air Quality Improvement: An Innovative and Interdisciplinary Approach to Improving Indoor Air Quality. BioFactors 2025, 51, e2126. [Google Scholar] [CrossRef]
- Mendell, M.J. Indoor Residential Chemical Emissions as Risk Factors for Respiratory and Allergic Effects in Children: A Review. Indoor Air 2007, 17, 259–277. [Google Scholar] [CrossRef]
- Silva, I.G.D.; Reis, I.D.S.; Franco, R.W.D.A.; Sanchez, B.; Canela, M.C. Effect of Volatile Organic Compounds on the Stability of Inorganic Pigments in Oil-Based Paintings. J. Cult. Herit. 2025, 73, 277–285. [Google Scholar] [CrossRef]
- Søgaard, R.; Poulsen, P.B.; Gelardi, R.M.; Geschke, S.; Schwensen, J.F.B.; Johansen, J.D. Hidden Formaldehyde in Cosmetic Products. Contact Dermat. 2024, 91, 497–502. [Google Scholar] [CrossRef]
- Zeng, T.; Liu, Y.; Jiang, Y.; Zhang, L.; Zhang, Y.; Zhao, L.; Jiang, X.; Zhang, Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. Adv. Sci. 2023, 10, e2301834. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, N.; Guo, J.; Wang, L.; Zhang, Y.; Wei, J.; Xu, Y.; Cao, Y.; Zhang, Y. Two-Parameter C-History Method: A Fast and Accurate Method for Determining the Characteristic Parameters of Formaldehyde/VOC Early-Stage Emissions from Building Materials. Sci. Total Environ. 2024, 946, 174218. [Google Scholar] [CrossRef] [PubMed]
- Rumchev, K.B.; Spickett, J.T.; Bulsara, M.K.; Phillips, M.R.; Stick, S.M. Domestic Exposure to Formaldehyde Significantly Increases the Risk of Asthma in Young Children. Eur. Respir. J. 2002, 20, 403–408. [Google Scholar] [CrossRef]
- ISO 16000-23:2018—UNI Ente Italiano Di Normazione. Available online: https://webstore.uni.com/iso-16000-23-2018 (accessed on 14 May 2025).
- Tejada, S.B. Evaluation of Silica Gel Cartridges Coated In Situ With Acidified 2,4-Dinitrophenylhydrazine for Sampling Aldehydes and Ketones in Air. Int. J. Environ. Anal. Chem. 1986, 26, 167–185. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Yu, J.Z. Determination of Airborne Carbonyls: Comparison of a Thermal Desorption/GC Method with the Standard DNPH/HPLC Method. Environ. Sci. Technol. 2004, 38, 862–870. [Google Scholar] [CrossRef]
- Xu, X.; Su, R.; Zhao, X.; Liu, Z.; Li, D.; Li, X.; Zhang, H.; Wang, Z. Determination of Formaldehyde in Beverages Using Microwave-Assisted Derivatization and Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography. Talanta 2011, 85, 2632–2638. [Google Scholar] [CrossRef]
- Martos, P.A.; Pawliszyn, J. Sampling and Determination of Formaldehyde Using Solid-Phase Microextraction with on-Fiber Derivatization. Anal. Chem. 1998, 70, 2311–2320. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, Y.; Cao, J.; Li, H.; Gao, R.; Zhang, Y.; Wang, K.; Li, Y.; Ren, Y.; Wang, W. A Sensitive Simultaneous Detection Approach for the Determination of 30 Atmospheric Carbonyls by 2,4-Dinitrophenylhydrazine Derivatization with HPLC-MS Technique and Its Preliminary Application. Chemosphere 2022, 303, 134985. [Google Scholar] [CrossRef]
- de Lima, L.F.; Brandão, P.F.; Donegatti, T.A.; Ramos, R.M.; Gonçalves, L.M.; Cardoso, A.A.; Pereira, E.A.; Rodrigues, J.A. 4-Hydrazinobenzoic Acid as a Derivatizing Agent for Aldehyde Analysis by HPLC-UV and CE-DAD. Talanta 2018, 187, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Impact of PAH Compounds in Building Materials on Indoor Air Quality-PAHSIS|Finnish Institute of Occupational Health. Available online: https://www.ttl.fi/en/research/projects/impact-pah-compounds-building-materials-indoor-air-quality-pahsis (accessed on 2 October 2024).
- Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Samples: A Critical Review of Gas Chromatographic (GC) Methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [Google Scholar] [CrossRef] [PubMed]
- Motelay-Massei, A.; Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using Passive Air Samplers to Assess Urban-Rural Trends for Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons. 2. Seasonal Trends for PAHs, PCBs, and Organochlorine Pesticides. Environ. Sci. Technol. 2005, 39, 5763–5773. [Google Scholar] [CrossRef]
- Jaward, F.M.; Farrar, N.J.; Harner, T.; Sweetman, A.J.; Jones, K.C. Passive Air Sampling of Polycyclic Aromatic Hydrocarbons and Polychlorinated Naphthalenes across Europe. Environ. Toxicol. Chem. 2004, 23, 1355–1364. [Google Scholar] [CrossRef]
- Harner, T.; Su, K.; Genualdi, S.; Karpowicz, J.; Ahrens, L.; Mihele, C.; Schuster, J.; Charland, J.-P.; Narayan, J. Calibration and Application of PUF Disk Passive Air Samplers for Tracking Polycyclic Aromatic Compounds (PACs). Atmos. Environ. 2013, 75, 123–128. [Google Scholar] [CrossRef]
- Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 69, 155406. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Xu, W.; He, Z.; Fu, C.; Du, F. Radon and Lung Cancer: Current Status and Future Prospects. Crit. Rev. Oncol. Hematol. 2024, 198, 104363. [Google Scholar] [CrossRef]
- Righi, S.; Bruzzi, L. Natural Radioactivity and Radon Exhalation in Building Materials Used in Italian Dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- Prichard, H.M.; Mariën, K. A Passive Diffusion 222Rn Sampler Based on Activated Carbon Adsorption. Health Phys. 1985, 48, 797–803. [Google Scholar] [CrossRef]
- Urban, M.; Piesch, E. Low Level Environmental Radon Dosimetry with a Passive Track Etch Detector Device. Radiat. Prot. Dosim. 1981, 1, 97–109. [Google Scholar]
- Kotrappa, P.; Dempsey, J.C.; Hickey, J.R.; Stieff, L.R. An Electret Passive Environmental 222rn Monitor Based on Ionization Measurement. Health Phys. 1988, 54, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; San Martini, F.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of Nitrogen Dioxide Chemiluminescence Monitors in a Polluted Urban Environment. Atmos. Chem. Phys. 2007, 7, 2691–2704. [Google Scholar] [CrossRef]
- García-Robledo, E.; Corzo, A.; Papaspyrou, S. A Fast and Direct Spectrophotometric Method for the Sequential Determination of Nitrate and Nitrite at Low Concentrations in Small Volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef]
- Shendage, S.S.; Patil, V.L.; Vanalakar, S.A.; Patil, S.P.; Harale, N.S.; Bhosale, J.L.; Kim, J.H.; Patil, P.S. Sensitive and Selective NO2 Gas Sensor Based on WO3 Nanoplates. Sens. Actuators B Chem. 2017, 240, 426–433. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef]
- Tang, Y.S.; Cape, J.N.; Sutton, M.A. Development and Types of Passive Samplers for Monitoring Atmospheric NO2 and NH3 Concentrations. Sci. World J. 2001, 1, 513–529. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-Dispersive Infrared Multi-Gas Sensing via Nanoantenna Integrated Narrowband Detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef]
- UNI EN 14626:2012—UNI Ente Italiano Di Normazione. Available online: https://store.uni.com/uni-en-14626-2012 (accessed on 14 May 2025).
- Allen, T.H.; Root, W.S. Colorimetric Determination of Carbon Monoxide in Air by an Improved Palladium Chloride Method. J. Biol. Chem. 1955, 216, 309–317. [Google Scholar] [CrossRef]
- Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes—An Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Atta, K.R.; Gavril, D.; Karaiskakis, G. A New Gas Chromatographic Methodology for the Estimation of the Composition of Binary Gas Mixtures. J. Chromatogr. Sci. 2003, 41, 123–132. [Google Scholar] [CrossRef]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of Domestic Exposure to Volatile Organic Compounds with Asthma in Young Children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P.; Wilkins, C.K.; Clausen, P.A.; Nielsen, G.D. Organic Compounds in Office Environments-Sensory Irritation, Odor, Measurements and the Role of Reactive Chemistry. Indoor Air 2006, 16, 7–19. [Google Scholar] [CrossRef]
- Wolkoff, P.; Nielsen, G.D. Organic Compounds in Indoor Air-Their Relevance for Perceived Indoor Air Quality? Atmos. Environ. 2001, 35, 4407–4417. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Xu, J.; Lian, M.; Zhang, W.; Wu, W.; Wu, M.; Zhao, J. The Vertical Distribution of VOCs and Their Impact on the Environment: A Review. Atmosphere 2022, 13, 1940. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Falkinham, J.O.; Gałaj, J.A. Advances in the Toxicity of Construction and Building Materials; Woodhead Publishing: Cambridge, UK, 2022; p. 334. [Google Scholar]
- Anand, S.S.; Philip, B.K.; Mehendale, H.M. Volatile Organic Compounds. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 967–970. [Google Scholar]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Bello, A.; Quinn, M.M.; Perry, M.J.; Milton, D.K. Characterization of Occupational Exposures to Cleaning Products Used for Common Cleaning Tasks-a Pilot Study of Hospital Cleaners. Environ. Health A Glob. Access Sci. Source 2009, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Crump, D. A Review of the Emission of VOCs from Polymeric Materials Used in Buildings. Build. Environ. 1998, 33, 357–374. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.; Zhang, P.; Li, J.; Wang, J.; Yu, J. Formaldehyde and Volatile Organic Compound (VOC) Emissions from Particleboard: Identification of Odorous Compounds and Effects of Heat Treatment. Build. Environ. 2017, 117, 118–126. [Google Scholar] [CrossRef]
- Lee, S.C.; Lam, S.; Kin Fai, H. Characterization of VOCs, Ozone, and PM10 Emissions from Office Equipment in an Environmental Chamber. Build. Environ. 2001, 36, 837–842. [Google Scholar] [CrossRef]
- O’neill, K.; Niu, X.; Wang, J.; Fang, R. Respirable Particles and Gas Contaminants Emissions from a Desktop Laser Cutter and Engraver. Aerosol Air Qual. Res. 2024, 24, 240032. [Google Scholar] [CrossRef]
- Kagi, N.; Fujii, S.; Horiba, Y.; Namiki, N.; Ohtani, Y.; Emi, H.; Tamura, H.; Kim, Y.S. Indoor Air Quality for Chemical and Ultrafine Particle Contaminants from Printers. Build. Environ. 2007, 42, 1949–1954. [Google Scholar] [CrossRef]
- Steinle, P. Characterization of Emissions from a Desktop 3D Printer and Indoor Air Measurements in Office Settings. J. Occup. Environ. Hyg. 2016, 13, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, J.; Higuchi, M.; Sasaki, Y.; Korenaga, T. Determination of Oxygenated Volatile Organic Compounds in Ambient Air Using Canister Collection–Gas Chromatography/Mass Spectrometry. Anal. Sci. 2007, 23, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-P.; Li, Y.; Zhang, L.; Zhang, L.-M.; Wang, J.-D. Advanced Development of Remote Sensing FTIR in Air Environment Monitoring. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2006, 26, 1863–1867. [Google Scholar]
- Fathy, A.; Sabry, Y.M.; Amr, M.; Gnambodoe-Capo-chichi, M.; Anwar, M.; Ghoname, A.O.; Amr, A.; Saeed, A.; Gad, M.; Haron, M.A.; et al. MEMS FTIR Optical Spectrometer Enables Detection of Volatile Organic Compounds (VOCs) in Part-per-Billion (Ppb) Range for Air Quality Monitoring. In Proceedings of the MOEMS and Miniaturized Systems XVIII, San Francisco, CA, USA, 4 March 2019; SPIE: Bellingham, WA, USA; Volume 10931, pp. 69–75. [Google Scholar]
- Czaplicka, M.; Klejnowski, K. Determination of Volatile Organic Compounds in Ambient Air: Comparison of Methods. J. Chromatogr. A 2002, 976, 369–376. [Google Scholar] [CrossRef]
- Matysik, S.; Herbarth, O.; Mueller, A. Determination of Microbial Volatile Organic Compounds (MVOCs) by Passive Sampling onto Charcoal Sorbents. Chemosphere 2009, 76, 114–119. [Google Scholar] [CrossRef]
- Lim, A.-Y.; Yoon, M.; Kim, E.-H.; Kim, H.-A.; Lee, M.J.; Cheong, H.-K. Effects of Mechanical Ventilation on Indoor Air Quality and Occupant Health Status in Energy-Efficient Homes: A Longitudinal Field Study. Sci. Total Environ. 2021, 785, 147324. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature Survey on How Different Factors Influence Human Comfort in Indoor Environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K. A Review of Different Strategies for HVAC Energy Saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
- Ghiaus, C.; Allard, F. The Physics of Natural Ventilation. In Natural Ventilation in the Urban Environment; Routledge: New York, NY, USA, 2005; ISBN 978-1-84977-206-8. [Google Scholar]
- Qian, H.; Li, Y.; Seto, W.H.; Ching, P.; Ching, W.H.; Sun, H.Q. Natural Ventilation for Reducing Airborne Infection in Hospitals. Build. Environ. 2010, 45, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Remion, G.; Moujalled, B.; El Mankibi, M. Review of Tracer Gas-Based Methods for the Characterization of Natural Ventilation Performance: Comparative Analysis of Their Accuracy. Build. Environ. 2019, 160, 106180. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Humphrey, J.L.; Carlton, E.J.; Adgate, J.L.; Barton, K.E.; Root, E.D.; Miller, S.L. Impact of Outdoor Air Pollution on Indoor Air Quality in Low-Income Homes during Wildfire Seasons. Int. J. Environ. Res. Public Health 2019, 16, 3535. [Google Scholar] [CrossRef]
- Wood, R.A.; Johnson, E.F.; Van Natta, M.L.; Pei, H.C.; Eggleston, P.A. A Placebo-Controlled Trial of a HEPA Air Cleaner in the Treatment of Cat Allergy. Am. J. Respir. Crit. Care Med. 1998, 158, 115–120. [Google Scholar] [CrossRef]
- Li, P.; Wang, C.; Zhang, Y.; Wei, F. Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small 2014, 10, 4543–4561. [Google Scholar] [CrossRef]
- Lowther, S.D.; Deng, W.; Fang, Z.; Booker, D.; Whyatt, D.J.; Wild, O.; Wang, X.; Jones, K.C. How Efficiently Can HEPA Purifiers Remove Priority Fine and Ultrafine Particles from Indoor Air? Environ. Int. 2020, 144, 106001. [Google Scholar] [CrossRef]
- Peck, R.L.; Grinshpun, S.A.; Yermakov, M.; Rao, M.B.; Kim, J.; Reponen, T. Efficiency of Portable HEPA Air Purifiers against Traffic Related Combustion Particles. Build. Environ. 2016, 98, 21–29. [Google Scholar] [CrossRef]
- Ahn, Y.C.; Park, S.K.; Kim, G.T.; Hwang, Y.J.; Lee, C.G.; Shin, H.S.; Lee, J.K. Development of High Efficiency Nanofilters Made of Nanofibers. Curr. Appl. Phys. 2006, 6, 1030–1035. [Google Scholar] [CrossRef]
- Myers, N.T.; Laumbach, R.J.; Black, K.G.; Ohman-Strickland, P.; Alimokhtari, S.; Legard, A.; De Resende, A.; Calderón, L.; Lu, F.T.; Mainelis, G.; et al. Portable Air Cleaners and Residential Exposure to SARS-CoV-2 Aerosols: A Real-World Study. Indoor Air 2022, 32, e13029. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable Air Purification: Review of Impacts on Indoor Air Quality and Health. Sci. Total Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Sublett, J.L. Effectiveness of Air Filters and Air Cleaners in Allergic Respiratory Diseases: A Review of the Recent Literature. Curr. Allergy Asthma Rep. 2011, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, P.; Julià-Serdà, G.; de Castro, F.R.; Caminero, J.; Barber, D.; Carrillo, T. Reduction of House Dust Mite Allergens after Dehumidifier Use. J. Allergy Clin. Immunol. 1995, 95, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect Health Effects of Relative Humidity in Indoor Environments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, M.; Li, B.; Du, C.; Yao, R.; Wang, L.; Yang, X.; Yu, W. Reducing Indoor Relative Humidity Can Improve the Circulation and Cardiorespiratory Health of Older People in a Cold Environment: A Field Trial Conducted in Chongqing, China. Sci. Total Environ. 2022, 817, 152695. [Google Scholar] [CrossRef]
- Jain, S.; Bansal, P.K. Performance Analysis of Liquid Desiccant Dehumidification Systems. Int. J. Refrig. 2007, 30, 861–872. [Google Scholar] [CrossRef]
- Bamba, I.; Azuma, M.; Hamada, N.; Kubo, H.; Isoda, N. Case Study of Airborne Fungi According to Air Temperature and Relative Humidity in Houses with Semi-Basements Adjacent to a Forested Hillside. Biocontrol Sci. 2014, 19, 1–9. [Google Scholar] [CrossRef]
- Qi, R.; Dong, C.; Zhang, L.-Z. A Review of Liquid Desiccant Air Dehumidification: From System to Material Manipulations. Energy Build. 2020, 215, 109897. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef]
- Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green Synthesis of Flexible Polyurethane Foams from Liquefied Lignin. Eur. Polym. J. 2013, 49, 1174–1184. [Google Scholar] [CrossRef]
- Kumar, R.; Ul Haq, M.I.; Raina, A.; Anand, A. Industrial Applications of Natural Fibre-Reinforced Polymer Composites–Challenges and Opportunities. Int. J. Sustain. Eng. 2019, 12, 212–220. [Google Scholar] [CrossRef]
- Wintle, B.A.; Lindenmayer, D.B. Adaptive Risk Management for Certifiably Sustainable Forestry. For. Ecol. Manag. 2008, 256, 1311–1319. [Google Scholar] [CrossRef]
- Ge, S.; Ma, N.L.; Jiang, S.; Ok, Y.S.; Lam, S.S.; Li, C.; Shi, S.Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. [Google Scholar] [CrossRef] [PubMed]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A Review of Structural, Thermo-Physical, Acoustical, and Environmental Properties of Wooden Materials for Building Applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Anderson, R.C.; Hansen, E.N. The Impact of Environmental Certification on Preferences for Wood Furniture: A Conjoint Analysis Approach. For. Prod. J. 2004, 54, 42–50. [Google Scholar]
- Yu, Y.; Zhu, R.; Wu, B.; Hu, Y.; Yu, W. Fabrication, Material Properties, and Application of Bamboo Scrimber. Wood Sci. Technol. 2015, 49, 83–98. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Kushwaha, A.; Chaudhary, K.; Prakash, C. A Study on the Mechanical Properties of Pineapple, Bamboo, and Cotton Woven Fabrics. Biomass Convers. Biorefinery 2024, 14, 16307–16318. [Google Scholar] [CrossRef]
- Hassan, T.; Jamshaid, H.; Mishra, R.; Khan, M.Q.; Petru, M.; Novak, J.; Choteborsky, R.; Hromasova, M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fiberswaste. Polymers 2020, 12, 654. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An Electronic Nose Based on Solid State Sensor Arrays for Low-Cost Indoor Air Quality Monitoring Applications. Sens. Actuators B Chem. 2004, 101, 39–46. [Google Scholar] [CrossRef]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The Use of Electrochemical Sensors for Monitoring Urban Air Quality in Low-Cost, High-Density Networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Peng, Z.; Jimenez, J.L. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environ. Sci. Technol. Lett. 2021, 8, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Thepnurat, M.; Saphet, P.; Tong-On, A. Low-Cost DIY Vane Anemometer Based on LabVIEW Interface for Arduino. J. Phys. Conf. Ser. 2018, 1144, 012028. [Google Scholar] [CrossRef]
- Tapashetti, A.; Vegiraju, D.; Ogunfunmi, T. IoT-Enabled Air Quality Monitoring Device: A Low Cost Smart Health Solution; IEEE: Seattle, WA, USA, 2016; pp. 682–685. [Google Scholar]
- Halhoul Merabet, G.; Essaaidi, M.; Ben Haddou, M.; Qolomany, B.; Qadir, J.; Anan, M.; Al-Fuqaha, A.; Abid, M.R.; Benhaddou, D. Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted Techniques. Renew. Sustain. Energy Rev. 2021, 144, 110969. [Google Scholar] [CrossRef]
- Oasis, l’AI per Qualità dell’aria e Salute Delle Persone » inno3; Roma (Italy). 2024. Available online: https://inno3.it/2024/06/21/oasis-santer-reply-enea-cefriel-ai-per-qualita-dellaria-e-salute-delle-persone/ (accessed on 14 May 2025).
- Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine Learning and Statistical Models for Predicting Indoor Air Quality. Indoor Air 2019, 29, 704–726. [Google Scholar] [CrossRef]
- Reggente, M.; Höhn, R.; Takahama, S. An Open Platform for Aerosol InfraRed Spectroscopy Analysis-AIRSpec. Atmos. Meas. Tech. 2019, 12, 2313–2329. [Google Scholar] [CrossRef]
LOD | LDR | Correlation Coefficient | Recovery | Reference | |
---|---|---|---|---|---|
Thermal desorption | 0.26 ppbv a | 0.5–2.5 ppbv | 0.9910 | - | [21] |
Assisted derivatization | 0.12 ng·mL−1 b | 0.5–50 ng mL−1 | 0.9965 | 84.9–95.1% | [22] |
Passive sampling | 4.6 ppbv | 15–3200 ppbv | 0.9990 | - | [23] |
LC-MS | 0.395 ng mL−1 | 1–600 ng mL−1 | 0.9902 | - | [24] |
LC-DAD | 5 ng·mL−1 | 10 µg mL−1 c–n.d. | 0.9990 | - | [25] |
Methodology Used | Matrix | Reference |
---|---|---|
Adsorbent tubes and GC-MS | Environmental | [27] |
Adsorbent tubes and LC-MS | Air urban-rural | [28] |
Polyurethane foam | Air | [30] |
Thermal desorption | Air | [31] |
Methodology Used | Matrix | Reference |
---|---|---|
Ionization chamber | Building Materials | [33] |
Solid scintillation | Air | [34] |
Alpha track detection | Environmental | [35] |
Electret | Environmental | [36] |
Methodology Used | Matrix | Reference |
---|---|---|
Chemiluminescence | Urban Environment | [37] |
UV-Vis Spectrophotometry | Marine and freshwater samples | [38] |
Electrochemical sensors | Atmospheric Air | [38] |
Adsorbent substrates | Atmospheric Air | [41] |
Methodology Used | Matrix | Reference |
---|---|---|
NDIR | Gases | [42] |
Colorimetric reagents | Air | [44] |
Electrochemical sensor | - | [45] |
Chromatographic techniques | Pure gases | [46] |
Typology | Compound | Main Emission Sources |
---|---|---|
Aliphatic Hydrocarbons | Methane | Natural emissions and combustion phenomena |
Aromatic Hydrocarbons | Benzene | Industrial processes and vehicular traffic |
Toluene | Paints, glues, and solvents | |
Halogenated Hydrocarbons | Chloroform | Industrial processes |
Aldehydes | Formaldehyde | Building materials, furniture, and cleaning products |
Alcohols | Ethanol | Disinfectants and cleaning products |
Propanol | Solvents and cleaning products | |
Ketones | Acetone | Solvents and nail polish removers |
Esters | Ethyl acetate | Paints and adhesives |
Terpenes | Limonene | Cleaning products and air fresheners |
Ventilation | |||
---|---|---|---|
Natural | Mechanics | ||
Advantages | Disadvantages | Advantages | Disadvantages |
Affordability | Limited control | Optimal air control | High costs |
Sustainability | Dependence on external conditions | Greater energy efficiency | Energy consumption |
Difficulty in the intermediate seasons | Improved air quality | Regular maintenance | |
Independence from weather conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Di Fiore, C.; Avino, P. Methodologies Used to Determine the Main Markers of Indoor Air Quality. Purification 2025, 1, 3. https://doi.org/10.3390/purification1010003
Notardonato I, Di Fiore C, Avino P. Methodologies Used to Determine the Main Markers of Indoor Air Quality. Purification. 2025; 1(1):3. https://doi.org/10.3390/purification1010003
Chicago/Turabian StyleNotardonato, Ivan, Cristina Di Fiore, and Pasquale Avino. 2025. "Methodologies Used to Determine the Main Markers of Indoor Air Quality" Purification 1, no. 1: 3. https://doi.org/10.3390/purification1010003
APA StyleNotardonato, I., Di Fiore, C., & Avino, P. (2025). Methodologies Used to Determine the Main Markers of Indoor Air Quality. Purification, 1(1), 3. https://doi.org/10.3390/purification1010003