Physiological and Psychological Benefits of Exposure to Nature During Work in a Military Bunker—A Pilot Experimental Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browning, M.H.; Rigolon, A.; McAnirlin, O. Where greenspace matters most: A systematic review of urbanicity, greenspace, and physical health. Landsc. Urban Plan. 2022, 217, 104233. [Google Scholar] [CrossRef]
- Hartig, T. Restoration in nature: Beyond the conventional narrative. Nat. Psychol. 2021, 89, 89–151. [Google Scholar] [CrossRef]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef]
- Von Lindern, E.; Lymeus, F.; Hartig, T. The restorative environment: A complementary concept for salutogenesis studies. In The Handbook of Salutogenesis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 181–195. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989; pp. 1–340. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Moll, A.; Collado, S.; Staats, H.; Corraliza, J.A. Restorative effects of exposure to nature on children and adolescents: A systematic review. J. Environ. Psychol. 2022, 84, 101884. [Google Scholar] [CrossRef]
- Menardo, E.; Brondino, M.; Hall, R.; Pasini, M. Restorativeness in natural and urban environments: A meta-analysis. Psychol. Rep. 2021, 124, 417–437. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Mimnaugh, K.J.; van Riper, C.J.; Laurent, H.K.; LaValle, S.M. Can Simulated Nature Support Mental Health? Comparing Short, Single-Doses of 360-Degree Nature Videos in Virtual Reality with the Outdoors. Front. Psychol. 2020, 10, 2667. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Hunter, R.F.; Cleland, C.; Cleary, A.; Droomers, M.; Wheeler, B.W.; Sinnett, D.; Nieuwenhuijsen, M.; Braubach, M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environ. Int. 2019, 130, 104923. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, G.; Yang, J. The restorative effects of short-term exposure to nature in immersive virtual environments (IVEs) as evidenced by participants’ brain activities. J. Environ. Manag. 2023, 326, 116830. [Google Scholar] [CrossRef]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Gärling, T. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Horiuchi, M.; Endo, J.; Takayama, N.; Murase, K.; Nishiyama, N.; Saito, H.; Fujiwara, A. Impact of viewing vs. not viewing a real forest on physiological and psychological responses in the same setting. Int. J. Environ. Res. Public Health 2014, 11, 10883–10901. [Google Scholar] [CrossRef]
- Corley, J.; Okely, J.A.; Taylor, A.M.; Page, D.; Welstead, M.; Skarabela, B.; Redmond, P.; Cox, S.R.; Russ, T.C. Home garden use during COVID-19: Associations with physical and mental wellbeing in older adults. J. Environ. Psychol. 2021, 62, 101545. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xu, H.; Ma, R.; Chen, S.; Wang, H.; Zheng, Z. What Is the Perceived Environmental Restorative Potential of Informal Green Spaces? An Empirical Study Based on Visitor-Employed Photography. Land 2024, 13, 1768. [Google Scholar] [CrossRef]
- Van den Bogerd, N.; Hovinga, D.; Hiemstra, J.A.; Maas, J. The Potential of Green Schoolyards for Healthy Child Development: A Conceptual Framework. Forests 2023, 14, 660. [Google Scholar] [CrossRef]
- Canh, M. Revitalizing spaces: Architectural strategies for alleviating chronic fatigue and combating burnout. E3S Web Conf. 2024, 585, 01016. [Google Scholar] [CrossRef]
- Bornioli, A.; Subiza-Pérez, M. Restorative urban environments for healthy cities: A theoretical model for the study of restorative experiences in urban built settings. Landsc. Res. 2023, 48, 152–163. [Google Scholar] [CrossRef]
- Gillis, K.; Gatersleben, B. A review of psychological literature on the health and wellbeing benefits of biophilic design. Buildings 2015, 5, 948–963. [Google Scholar] [CrossRef]
- Saniotis, A.; Henneberg, M.; Mohammadi, K. Evolutionary medicine and bioastronautics: An innovative approach in addressing adverse mental health effects to astronauts during long term space missions. Front. Physiol. 2025, 16, 1558625. [Google Scholar] [CrossRef]
- Tabassum, R.R.; Park, J. Development of a Building Evaluation Framework for Biophilic Design in Architecture. Buildings 2024, 14, 3254. [Google Scholar] [CrossRef]
- Al Khatib, I.; Samara, F.; Ndiaye, M. A systematic review of the impact of therapeutical biophilic design on health and wellbeing of patients and care providers in healthcare services settings. Front. Built Environ. 2024, 10, 1467692. [Google Scholar] [CrossRef]
- Gu, J.; Liu, H.; Lu, H. Can Even a Small Amount of Greenery Be Helpful in Reducing Stress? A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9778. [Google Scholar] [CrossRef]
- Pandita, D.; Choudhary, H. Biophilic designs: A solution for the psychological well-being and quality of life of older people. Work. Older People 2024, 28, 417–427. [Google Scholar] [CrossRef]
- Ali, I.; McKinlay, K. The Dungeon Effect: The Importance of Biophilic Design to C2 Effectiveness in Military Environments. In Proceedings of the International Command and Control Research & Technology Symposium, Laurel, MA, USA, 29–31 October 2019. [Google Scholar]
- Deng, Z.; Dong, B.; Guo, X.; Zhang, J. Impact of Indoor Air Quality and Multi-domain Factors on Human Productivity and Physiological Responses: A Comprehensive Review. Indoor Air 2024, 2024, 5584960. [Google Scholar] [CrossRef]
- Felgueiras, F.; Mourão, Z.; Moreira, A.; Gabriel, M.F. Indoor environmental quality in offices and risk of health and productivity complaints at work: A literature review. J. Hazard. Mater. Adv. 2023, 10, 100314. [Google Scholar] [CrossRef]
- Menardo, E.; Di Marco, D.; Ramos, S.; Brondino, M.; Arenas, A.; Costa, P.; Vaz de Carvalho, C.; Pasini, M. Nature and Mindfulness to Cope with Work-Related Stress: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 5948. [Google Scholar] [CrossRef]
- Colenberg, S.; Jylhä, T.; Arkesteijn, M. The relationship between interior office space and employee health and well-being—A literature review. Build. Res. Inf. 2021, 49, 352–366. [Google Scholar] [CrossRef]
- Keene, K.; McCord, K.; Dehwah, A.H.A.; Jung, W. Meta-Analysis and Regression Modeling of the Impacts of Four Indoor Environmental Quality Metrics on Office Performance. Indoor Air 2025, 2025, 6840369. [Google Scholar] [CrossRef]
- Yadav, M.; Cabrera, D.; Kim, J.; Fels, J.; de Dear, R. Sound in occupied open-plan offices: Objective metrics with a review of historical perspectives. Appl. Acoust. 2021, 177, 107943. [Google Scholar] [CrossRef]
- James, O.; Delfabbro, P.; King, D.L. A comparison of psychological and work outcomes in open-plan and cellular office designs: A systematic review. Sage Open 2021, 11, 2158244020988869. [Google Scholar] [CrossRef]
- Bergefurt, L.; Appel-Meulenbroek, R.; Arentze, T. Level-adaptive sound masking in the open-plan office: How does it influence noise distraction, coping, and mental health? Appl. Acoust. 2024, 217, 109845. [Google Scholar] [CrossRef]
- Indrani, H.C.; Ekasiwi, S.N.N.; Arifianto, D. Conceptual model of soundscape perception based on working behaviour in open-plan offices. In Proceedings of the The 1st Biennial International Conference on Acoustics and Vibration (ANV 2020), Yogyakarta, Indonesia, 23–24 November 2020. [Google Scholar]
- Haapakangas, A.; Hongisto, V.; Hyönä, J.; Kokko, J.; Keränen, J. Effects of unattended speech on performance and subjective distraction: The role of acoustic design in open-plan offices. Appl. Acoust. 2014, 86, 1–16. [Google Scholar] [CrossRef]
- Smith, A.P.; Langer, J.; Taylour, J. Noise in Open-Plan Offices: A Holistic Research Strategy. In Proceedings of the 11th Convention of the European Acoustics Association, Málaga, Spain, 23–26 June 2025. [Google Scholar]
- Sun, Z.; Hu, S.; Xie, S.; Wu, L.; Jiang, C.; Ding, S.; Zhang, Z.; Xu, W.; Li, H. Does background sound impact cognitive performance and relaxation states in enclosed office? Build. Environ. 2025, 267, 112313. [Google Scholar] [CrossRef]
- Voordt, T.V.D.; Jensen, P.A. The impact of healthy workplaces on employee satisfaction, productivity and costs. J. Corp. Real Estate 2023, 25, 29–49. [Google Scholar] [CrossRef]
- Colenberg, S.; Jylhä, T. Identifying interior design strategies for healthy workplaces—A literature review. J. Corp. Real Estate 2022, 24, 173–189. [Google Scholar] [CrossRef]
- Dole, C.; Schroeder, R.G. The impact of various factors on the personality, job satisfaction and turnover intentions of professional accountants. Manag. Audit. J. 2001, 16, 234–245. [Google Scholar] [CrossRef]
- Gray, T.; Birrell, C. Are biophilic-designed site office buildings linked to health benefits and high performing occupants? Int. J. Environ. Res. Public Health 2014, 11, 12204–12222. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Shu, S. An experimental study: The restorative effect of soundscape elements in a simulated open-plan office. Acta Acust. United Acust. 2018, 104, 106–115. [Google Scholar] [CrossRef]
- Pasini, M.; Brondino, M.; Trombin, R.; Filippi, Z. A participatory interior design approach for a restorative work environment: A research-intervention. Front. Psychol. 2021, 12, 718446. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Ikaga, T.; Sanchez, S.V. Quantitative improvement in workplace performance through biophilic design: A pilot experiment case study. Energy Build. 2018, 177, 316–328. [Google Scholar] [CrossRef]
- Wallmann-Sperlich, B.; Hoffmann, S.; Salditt, A.; Bipp, T.; Froboese, I. Moving to an “Active” biophilic designed office workplace: A pilot study about the effects on sitting time and sitting habits of office-based workers. Int. J. Environ. Res. Public Health 2019, 16, 1559. [Google Scholar] [CrossRef]
- Gonçalves, G.; Sousa, C.; Fernandes, M.J.; Almeida, N.; Sousa, A. Restorative Effects of Biophilic Workplace and Nature Exposure during Working Time: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 6986. [Google Scholar] [CrossRef] [PubMed]
- Charisi, V.; Zafeiroudi, A.; Trigonis, I.; Tsartsapakis, I.; Kouthouris, C. The Impact of Green Spaces on Workplace Creativity: A Systematic Review of Nature-Based Activities and Employee Well-Being. Sustainability 2025, 17, 390. [Google Scholar] [CrossRef]
- Landon, L.B.; Douglas, G.L.; Downs, M.E.; Greene, M.R.; Whitmire, A.M.; Zwart, S.R.; Roma, P.G. The behavioral biology of teams: Multidisciplinary contributions to social dynamics in isolated, confined, and extreme environments. Front. Psychol. 2019, 10, 2571. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.P.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 2013, 23, 1554–1558. [Google Scholar] [CrossRef]
- Woods, M.; Brown, S.G.; Norris, K. Optimizing psychosocial work environments and experiences for people working in isolated, confined, and/or extreme conditions. Front. Psychol. 2025, 16, 1581336. [Google Scholar] [CrossRef]
- Brasher, K.S.; Dew, A.B.; Kilminster, S.G.; Bridger, R.S. Occupational stress in submariners: The impact of isolated and confined work on psychological well-being. Ergonomics 2010, 53, 305–313. [Google Scholar] [CrossRef]
- Golden, S.J.; Chang, C.H.; Kozlowski, S.W. Teams in isolated, confined, and extreme (ICE) environments: Review and integration. J. Organ. Behav. 2018, 39, 701–715. [Google Scholar] [CrossRef]
- Nadkarni, N.; Hasbach, P.; Thys, T.; Crockett, E.; Schnacker, L. Impacts of Nature Imagery on People in Severely Nature-Deprived Environments. Front. Ecol. Environ. 2017, 15, 395–403. [Google Scholar] [CrossRef]
- Wolak, R.J.; Johnson, J.C. Social dynamics in an isolated, confined, and extreme workplace. Int. J. Biometeorol. 2021, 65, 437–451. [Google Scholar] [CrossRef]
- Abubakr, E.; Kim, J. Evaluating Industry Perception of Biophilic Design in Enhancing Construction Job Site Trailers’ Physical Work Environment. EPiC Ser. Built Environ. 2024, 5, 358–366. [Google Scholar] [CrossRef]
- Neilson, B.N.; Craig, C.M.; Altman, G.C.; Travis, A.T.; Vance, J.A.; Klein, M.I. Can the Biophilia Hypothesis Be Applied to Long-Duration Human Space Flight? A Mini-Review. Front. Psychol. 2021, 12, 703766. [Google Scholar] [CrossRef]
- Dempsey, H. Biophilia and Biophobia: Diverse Experiences of Nature in Prison. Pap. Br. Criminol. Conf. Br. Soc. Criminol. 2021, 20, 5–21. [Google Scholar]
- Moran, D.; Jones, P.I.; Jordaan, J.A.; Porter, A.E. Nature contact in the carceral workplace: Greenspace and staff sickness absence in prisons in England and Wales. Environ. Behav. 2022, 54, 276–299. [Google Scholar] [CrossRef]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Mahmoud, E.A.; Almana, F.A.; Elansary, H.O. Exploring the potential of plant astrobiology: Adapting flora for extra-terrestrial habitats: A review. Biol. Futur. 2025, 76, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Firth, A.; Jayadas, A. Biophilic Design of the ISS Crew Quarters to Improve Cognitive and Physiological Health Measures. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022. [Google Scholar]
- Winn, A.; Jayadas, A.; Chandrasekera, T.; Thaxton, S. Biophilic Interventions in Space Habitat Crew Quarters to Improve Cognitive & Physiological Health. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–14. [Google Scholar]
- Klotz, A.C.; Bolino, M.C. Bringing the great outdoors into the workplace: The energizing effect of biophilic work design. Acad. Manag. Rev. 2021, 46, 231–251. [Google Scholar] [CrossRef]
- Bishop, S.; Häuplik-Meusburger, S.; Guined, J.; Peldszuz, R. Bionomic Design Countermeasures for Enhancing Cognitive and Psychological Functioning and Crew Performance in Isolated and Confined Habitats. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Firth, A. Biophilic Interventions in Crew Quarters for Deep Space Transit Habitats to Improve Cognitive and Physiological Health Measures. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2022. [Google Scholar]
- Latini, A.; Torresin, S.; Oberman, T.; Di Giuseppe, E.; Aletta, F.; Kang, J.; D’Orazio, M. Virtual reality application to explore indoor soundscape and physiological responses to audio-visual biophilic design interventions: An experimental study in an office environment. J. Build. Eng. 2024, 87, 108947. [Google Scholar] [CrossRef]
- Mahrous, A.; Dewidar, K.; Refaat, M.; Nessim, A. The impact of biophilic attributes on university students level of Satisfaction: Using virtual reality simulation. Ain Shams Eng. J. 2024, 15, 102304. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Marcelli, L.; Latini, A.; D’Orazio, M. Evaluating Biophilic Design strategies in Immersive Virtual Indoor Environments: A systematic review on the Implications for buildings occupants. J. Build. Eng. 2024, 98, 111127. [Google Scholar] [CrossRef]
- Riches, S.; Taylor, L.; Jeyarajaguru, P.; Veling, W.; Valmaggia, L. Virtual reality and immersive technologies to promote workplace wellbeing: A systematic review. J. Ment. Health 2024, 33, 253–262. [Google Scholar] [CrossRef]
- Berto, R. The role of nature in coping with psycho-physiological stress: A literature review on restorativeness. Behav. Sci. 2014, 4, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008. [Google Scholar]
- López, A.; Lourenço, P.R.; Dimas, I.; Figueiredo, C. PJAWSN—Escala Portuguesa do Bem-Estar Afetivo no Trabalho: Contributos para a sua validação. In A Emoção nas Organizações; Lourenço, P.R., Carvalho, C., Peralta, C., Eds.; Psicosoma: Lisboa, Portugal, 2012; pp. 169–194. [Google Scholar]
- Van Katwyk, P.T.; Fox, S.; Spector, P.E.; Kelloway, E.K. Using the Job-Related Affective Well-Being Scale (JAWS) to investigate affective responses to work stressors. J. Occup. Health Psychol. 2000, 5, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, C.; Monteiro, J.; Lourenço, P.R.; Figueiredo, C. Emoções e grupos de trabalho: Adaptação de uma Escala de Medida das Emoções, para situação normal e para situação de conflito. Psychologica 2008, 47, 145–163. [Google Scholar]
- Hartig, T.; Korpela, K.; Evans, G.W.; Gärling, T. A measure of restorative quality in environments. Scand. Hous. Plan. Res. 1997, 14, 175–194. [Google Scholar] [CrossRef]
- Payne, S.R. The production of a Perceived Restorativeness Soundscape Scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Payne, S.R.; Guastavino, C. Exploring the validity of the Perceived Restorativeness Soundscape Scale: A psycholinguistic approach. Front. Psychol. 2018, 9, 2224. [Google Scholar] [CrossRef]
- Korpela, K.M.; Ylén, M.; Tyrväinen, L.; Silvennoinen, H. Determinants of restorative experiences in everyday favorite places. Health Place 2008, 14, 636–652. [Google Scholar] [CrossRef]
- Sousa, C.; Fernandes, M.J.; Encarnação, T.; Gonçalves, G. Adaptation and Validation of the Perceived Restorativeness Scale (PRS) for the Portuguese Population: A Study on the Assessment of the Restorative Effect of Environments. Green Health 2025, 1, 7. [Google Scholar] [CrossRef]
- Mallawaarachchi, H.; De Silva, L.; Rameezdeen, R. Indoor environmental quality and occupants’ productivity: Suggestions to enhance national green certification criteria. Built Environ. Proj. Asset Manag. 2016, 6, 462–477. [Google Scholar] [CrossRef]
- Rego, A.; Pina e Cunha, M. Workplace spirituality and organizational commitment: An empirical study. J. Organ. Change Manag. 2008, 21, 53–75. [Google Scholar] [CrossRef]
- Reinhardt, T.; Schmahl, C.; Wüst, S.; Bohus, M. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 2012, 198, 106–111. [Google Scholar] [CrossRef]
- Richardson, K.M.; Rothstein, H.R. Effects of occupational stress management intervention programs: A meta-analysis. J. Occup. Health Psychol. 2008, 13, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Chen, P. Human Response to Window Views and Indoor Plants in the Workplace. HortScience 2005, 40, 1354–1359. [Google Scholar] [CrossRef]
- Radun, J.; Maula, H.; Tervahartiala, I.K.; Rajala, V.; Schlittmeier, S.; Hongisto, V. The effects of irrelevant speech on physiological stress, cognitive performance, and subjective experience–Focus on heart rate variability. Int. J. Psychophysiol. 2024, 200, 112352. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, A.; Kondylakis, H.; Katehakis, D.; Kouroubali, A.; Alexiadis, A.; Segkouli, S.; Votis, K.; Tzovaras, D. Smartwatch interventions in healthcare: A systematic review of the literature. Int. J. Med. Inform. 2024, 190, 105560. [Google Scholar] [CrossRef]
- Hahnen, C.; Freeman, C.G.; Haldar, N.; Hamati, J.N.; Bard, D.M.; Murali, V.; Merli, G.J.; Joseph, J.I.; van Helmond, N. Accuracy of vital signs measurements by a smartwatch and a portable health device: Validation study. JMIR mHealth uHealth 2020, 8, e16811. [Google Scholar] [CrossRef]
- Montalvo, S.; Martinez, A.; Arias, S.; Lozano, A.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Boyea, B.L.; Dorgo, S. Commercial smart watches and heart rate monitors: A concurrent validity analysis. J. Strength Cond. Res. 2023, 37, 1802–1808. [Google Scholar] [CrossRef]
- Lu, C.; Cui, W.; Zhu, Z.; Wu, Y.; Xing, Q.; Pan, B.; Shen, Y. Validity of smartwatch-derived estimates of lactate threshold heart rate and pace compared to graded exercise testing. Front. Physiol. 2025, 16, 1621996. [Google Scholar] [CrossRef]
- Nissen, M.; Slim, S.; Jäger, K.; Flaucher, M.; Huebner, H.; Danzberger, N.; Fasching, P.; Beckmann, M.W.; Gradl, S.; Eskofier, B.M. Heart rate measurement accuracy of Fitbit Charge 4 and Samsung Galaxy Watch Active2: Device evaluation study. JMIR Form. Res. 2022, 6, e33635. [Google Scholar] [CrossRef]
- Sarhaddi, F.; Kazemi, K.; Azimi, I.; Cao, R.; Niela-Vilén, H.; Axelin, A.; Liljeberg, P.; Rahmani, A.M. A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability. PLoS ONE 2022, 17, e0268361. [Google Scholar] [CrossRef]
- Jacko, T.; Bartsch, J.; von Diecken, C.; Ueberschär, O. Validity of Current Smartwatches for Triathlon Training: How Accurate Are Heart Rate, Distance, and Swimming Readings? Sensors 2024, 24, 4675. [Google Scholar] [CrossRef]
- Anderson, A.P.; Mayer, M.D.; Fellows, A.M.; Cowan, D.R.; Hegel, M.T.; Buckey, J.C. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform. 2017, 88, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Jahncke, H.; Eriksson, K.; Naula, S. The effects of auditive and visual settings on perceived restoration likelihood. Noise Health 2015, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundström, J.N. Sounds of Nature in the City: No Evidence of Bird Song Improving Stress Recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef]
- Lindborg, P.; Friberg, A. Personality Traits Bias the Perceived Quality of Sonic Environments. Appl. Sci. 2016, 6, 405. [Google Scholar] [CrossRef]
- Thoma, M.V.; Mewes, R.; Nater, U.M. Preliminary evidence: The stress-reducing effect of listening to water sounds depends on somatic complaints: A randomized trial. Medicine 2018, 97, e9851. [Google Scholar] [CrossRef]
- Bell, S.L.; Leyshon, C.; Foley, R.; Kearns, R.A. The “healthy dose” of nature: A cautionary tale. Geogr. Compass 2019, 13, e12415. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Grellier, J.; Wheeler, B.W.; Hartig, T.; Warber, S.L.; Bone, A.; Depledge, M.H.; Fleming, L.E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 7620. [Google Scholar] [CrossRef]
- Trougakos, J.P.; Hideg, I. Momentary work recovery: The role of within-day work breaks. In Current Perspectives on Job-Stress Recovery, 1st ed.; Sonnentag, S., Perrewé, P.L., Ganster, D.C., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2009; Volume 7, pp. 37–84. [Google Scholar]
- Ríos-Rodríguez, M.L.; Testa Moreno, M.; Moreno-Jiménez, P. Nature in the Office: A Systematic Review of Nature Elements and Their Effects on Worker Stress Response. Healthcare 2023, 11, 2838. [Google Scholar] [CrossRef]
- Korpela, K.; Nummi, T.; Lipiäinen, L.; De Bloom, J.; Sianoja, M.; Pasanen, T.; Kinnunen, U. Nature exposure predicts well-being trajectory groups among employees across two years. J. Environ. Psychol. 2017, 52, 81–91. [Google Scholar] [CrossRef]
- Song, S.; Tu, R.; Lu, Y.; Yin, S.; Lin, H.; Xiao, Y. Restorative effects from green exposure: A systematic review and meta-analysis of randomized control trials. Int. J. Environ. Res. Public Health 2022, 19, 14506. [Google Scholar] [CrossRef]
- Van de Schoot, R.; Miočević, M. Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners; Taylor & Francis: London, UK, 2020; p. 284. Available online: https://library.oapen.org/handle/20.500.12657/103145 (accessed on 30 September 2025).
- Cao, Y.; Chen, R.C.; Katz, A.J. Why is a small sample size not enough? Oncologist 2024, 29, 761–763. [Google Scholar] [CrossRef]



| Soundscape Human Voices, Keyboard Typing, Phone Ring | Sounds of Water, Rain, Wind, Birds | Visual Setting Metal Furniture, Devices, Gray Walls, Artificial Light | “Window’s Natural View” | Temperature and Humidity | |
|---|---|---|---|---|---|
| Control 1 | √ | √ | 21 °C 55.5% | ||
| Sound | √ | √ | √ | 21 °C 55.5% | |
| Image | √ | √ | √ | 21 °C 55.5% | |
| Sound and Image | √ | √ | √ | √ | 21 °C 55.5% |
| Control 2 | √ | √ | 21 °C 55.5% |
| Control 1 | Sound | Video | Sound-Video | Control 2 | p-Value | |
|---|---|---|---|---|---|---|
| (M ± SD) | (M ± SD) | (M ± SD) | (M ± SD) | (M ± SD) | ||
| Heart Rate | 93.65 ± 5.93 | 79.00 ± 12.01 | 80.20 ± 10.48 | 75.70 ± 8.92 | 87.90 ± 6.48 | 0.001 * |
| Posit Emo | 3.01 ± 0.27 | 3.17 ± 0.30 | 3.34 ± 0.36 | 3.54 ± 0.28 | 2.85 ± 0.44 | 0.001 * |
| Negat Emo | 2.85 ± 0.47 | 2.54 ± 0.53 | 2.52 ± 0.53 | 2.38 ± 0.64 | 2.95 ± 2.30 | 0.004 * |
| Sound Rest | 3.65 ± 1.57 | 4.61 ± 1.33 | 3.83 ± 1.47 | 4.85 ± 1.02 | 3.50 ± 0.84 | 0.002 * |
| Rest Effect | 3.33 ± 1.28 | 4.39 ± 1.20 | 4.45 ± 1.41 | 4.78 ± 1.00 | 3.80 ± 1.19 | 0.002 * |
| Work Perf | 5.10 ± 0.64 | 5.33 ± 0.58 | 5.35 ± 0.88 | 5.48 ± 0.63 | 5.08 ± 0.78 | 0.171 |
| Heart Rate | Positive Emotions | Negative Emotions | Soundscape Restorative | Restorative Effects | |
|---|---|---|---|---|---|
| Control 1 × Sound | 0.006 * | 0.795 | 0.038 * | 0.024 * | 0.019 * |
| Control 1 × Video | <0.001 ** | 0.100 | 0.024 * | 0.759 | 0.015 * |
| Control 1 × Sound and Video | <0.001 ** | 0.003 ** | 0.009 * | 0.007 * | 0.001 ** |
| Sound × Video | 0.603 | 0.166 | 0.862 | 0.046 * | 0.931 |
| Sound × Sound and Video | 0.119 | 0.007 * | 0.603 | 0.665 | 0.225 |
| Video × Sound and Video | 0.299 | 0.194 | 0.729 | 0.015 * | 0.260 |
| Control 1 × Control 2 | 0.005 ** | 0.362 | 0.646 | 0.593 | 0.096 |
| Control 2 × Sound | 0.017 * | 0.074 | 0.032 * | 0.047 * | 0.126 |
| Control 2 × Video | 0.022 * | 0.036 * | 0.044 * | 0.258 | 0.058 |
| Control 2 × Sound and Video | 0.050 * | 0.008 * | 0.050 * | 0.028 * | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.; Bento, A.T.; Gonçalves, G.; Campos, C. Physiological and Psychological Benefits of Exposure to Nature During Work in a Military Bunker—A Pilot Experimental Study. Green Health 2025, 1, 17. https://doi.org/10.3390/greenhealth1030017
Fernandes J, Bento AT, Gonçalves G, Campos C. Physiological and Psychological Benefits of Exposure to Nature During Work in a Military Bunker—A Pilot Experimental Study. Green Health. 2025; 1(3):17. https://doi.org/10.3390/greenhealth1030017
Chicago/Turabian StyleFernandes, Jacinta, Ana Teresa Bento, Gabriela Gonçalves, and Clarice Campos. 2025. "Physiological and Psychological Benefits of Exposure to Nature During Work in a Military Bunker—A Pilot Experimental Study" Green Health 1, no. 3: 17. https://doi.org/10.3390/greenhealth1030017
APA StyleFernandes, J., Bento, A. T., Gonçalves, G., & Campos, C. (2025). Physiological and Psychological Benefits of Exposure to Nature During Work in a Military Bunker—A Pilot Experimental Study. Green Health, 1(3), 17. https://doi.org/10.3390/greenhealth1030017

