Collaborative Approaches and Instruments for the Spatial Management of Agricultural Pests
Abstract
1. Introduction
2. Historical Development of Pest Control
3. The Role of Spatial Dynamics in Pest Control
3.1. Spatial Heterogeneity and Semi-Natural Habitats
3.2. Landscape Connectivity
4. Collaborative Frameworks in Pest Management
4.1. Role of Collaboration in Pest Control Strategies
4.2. Collaboration for Better Resource Allocation in Pest Management
4.3. Collaborative Approaches to Address the Spatiality of Pest Control
4.4. Governance of Collaboration
4.5. Examples of Successful and Unsuccessful Governance of Collaboration
5. Instruments That Induce Collaboration
5.1. Economic Instruments for Biodiversity Conservation
5.2. Instruments for Collective Action and Coordination Incentives
5.3. Policy Instruments, Collaboration, and Pest Control
6. Challenges and Ways Forward
Funding
Conflicts of Interest
References
- Tiwari, A.K. IPM Essentials: Combining Biology, Ecology, and Agriculture for Sustainable Pest Control. J. Appl. Biol. Biotechnol. 2024, 27, 39–47. [Google Scholar] [CrossRef]
- Samanta, S.; Maji, A.; Das, M.; Banerjee, S.; Bhattacharjee, A.; Pal, N.; Bhowmik, P.; Banerjee, S.; Mukherjee, S. An Updated Integrated Pest Management System: A Footprint for Modern-Day Sustainable Agricultural Practices. Uttar Pradesh J. Zool. 2024, 45, 71–79. [Google Scholar] [CrossRef]
- Lindquist, D.A. Pest Management Strategies: Area-Wide and Conventional. In Area-Wide Control of Fruit Flies and Other Insect Pests. Joint Proceedings of the International Conference on Area-Wide Control of Insect Pests, 28 May–2 June 1998 and the Fifth International Symposium on Fruit Flies of Economic Importance, Penang, Malaysia, 1–5 June 1998; Penerbit Universiti Sains Malaysia: Pulau Pinang, Malaysia, 2000; pp. 13–19. [Google Scholar]
- Dalal, P.K.; Rathee, M.; Singh, J.K. Area Wide Pest Management: Concept and Approaches. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1476–1495. [Google Scholar] [CrossRef]
- Lu, Y.; Wyckhuys, K.A.G.; Wu, K. Pest Status, Bio-Ecology, and Area-Wide Management of Mirids in East Asia. Annu. Rev. Entomol. 2024, 69, 393–413. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Leonard, D.; Marra, J.L.; Pfister, S.E. Area-Wide Management of Invading Gypsy Moth (Lymantria Dispar) Populations in the USA. In Area-Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 551–560. ISBN 978-1-003-16923-9. [Google Scholar]
- Brewer, M.J.; Dorman, S.J. Editorial: Areawide Pest Management and Agroecosystem Resilience to Suppress Invasive Insects. Front. Insect Sci. 2025, 5, 1605737. [Google Scholar] [CrossRef]
- Monica, K.K.; Fernadis, M.; Duncan, C.; Winnie, N.; Daniel, K.; Léna, D.-G. Area-Wide Pest Management and Prospects for Fall Armyworm Control on Smallholder Farms in Africa: A Review. Sustain. Environ. 2024, 10, 2345464. [Google Scholar] [CrossRef]
- Figuera, S.G.; Babcock, B.; Lubell, M.; McRoberts, N. Collective Action in the Area-Wide Management of an Invasive Plant Disease. Ecol. Soc. 2022, 27, 12. [Google Scholar] [CrossRef]
- Vargas, R.I.; Mau, R.F.; Jang, E.B.; Faust, R.M.; Wong, L. The Hawaii Fruit Fly Areawide Pest Management Programme. In Areawide Pest Management: Theory and Implementation; Koul, O., Cuperus, G., Elliott, N., Eds.; CABI: Oxfordshire, UK, 2008; pp. 300–325. ISBN 978-1-84593-372-2. [Google Scholar]
- United States Department of Agriculture, Office of International Cooperation and Development. Biological Control of Pests in China; U.S. Dept. of Agriculture, Scientific and Technical Exchange Division, China Program: Washington, DC, USA, 1982; Available online: https://www.biodiversitylibrary.org/bibliography/179934 (accessed on 17 November 2025).
- Kogan, M. Integrated Pest Management: Historical Perspectives and Contemporary Developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef] [PubMed]
- FAO. NSP—Integrated Pest Management; FAO Definition: Rome, Italy, 2020. [Google Scholar]
- Romeh, A.A. Integrated Pest Management for Sustainable Agriculture; CABI: Wallingford, UK, 2018. [Google Scholar]
- Wyss, J.H. Screwworm Eradication in the Americas. Ann. N. Y. Acad. Sci. 2006, 916, 186–193. [Google Scholar] [CrossRef]
- Vinatier, F.; Tixier, P.; Duyck, P.-F.; Lescourret, F. Factors and Mechanisms Explaining Spatial Heterogeneity: A Review of Methods for Insect Populations. Methods Ecol. Evol. 2011, 2, 11–22. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The Effect of Cooperative Membership on Agricultural Technology Adoption in Sichuan, China. China Econ. Rev. 2020, 62, 101334. [Google Scholar] [CrossRef]
- Gilioli, G.; Bodini, A.; Baumgärtner, J. Metapopulation Modelling and Area-Wide Pest Management Strategies Evaluation. An Application to the Pine Processionary Moth. Ecol. Model. 2013, 260, 1–10. [Google Scholar] [CrossRef]
- Sharov, A.A.; Colbert, J.J. A Model for Testing Hypotheses of Gypsy Moth, Lymantria Dispar L., Population Dynamics. Ecol. Model. 1996, 84, 31–51. [Google Scholar] [CrossRef]
- Wood, C.M.; Whitmore, S.A.; Gutiérrez, R.J.; Sawyer, S.C.; Keane, J.J.; Peery, M.Z. Using Metapopulation Models to Assess Species Conservation–Ecosystem Restoration Trade-Offs. Biol. Conserv. 2018, 224, 248–257. [Google Scholar] [CrossRef]
- Fenichel, E.P.; Richards, T.J.; Shanafelt, D.W. The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers. Environ. Resour. Econ. 2014, 59, 231–255. [Google Scholar] [CrossRef]
- Ferranto, S.; Huntsinger, L.; Getz, C.; Lahiff, M.; Stewart, W.; Nakamura, G.M.; Kelly, M. Management Without Borders? A Survey of Landowner Practices and Attitudes toward Cross-Boundary Cooperation. Soc. Nat. Resour. 2013, 26, 1082–1100. [Google Scholar] [CrossRef]
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The Interplay of Landscape Composition and Configuration: New Pathways to Manage Functional Biodiversity and Agroecosystem Services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A Meta-Analysis of Crop Pest and Natural Enemy Response to Landscape Complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef]
- Khalid, H.; Zhang, H.; Liu, C.; Li, W.; Abuzar, M.K.; Amin, F.R.; Liu, G.; Chen, C. PEST (Political, Environmental, Social & Technical) Analysis of the Development of the Waste-to-Energy Anaerobic Digestion Industry in China as a Representative for Developing Countries. Sustain. Energy Fuels 2020, 4, 1048–1062. [Google Scholar] [CrossRef]
- Coll, M. Conservation Biological Control and the Management of Biological Control Services: Are They the Same? Phytoparasitica 2009, 37, 205–208. [Google Scholar] [CrossRef]
- Wilson, G. DDT and the American Century: Global Health, Environmental Politics, and the Pesticide That Changed the World by David Kinkela (Review). J. World Hist. 2013, 24, 250–253. [Google Scholar] [CrossRef]
- National Research Council. Pesticide Resistance: Strategies and Tactics for Management; National Academies Press: Washington, DC, USA, 1986; p. 619. ISBN 978-0-309-03627-6. [Google Scholar]
- Nagy, B. The importance of biological vision in plant protection against pests. Curr. Issues Plant Prot. 1957, 2, 1–10. [Google Scholar]
- Székács, A.; Darvas, B. Attempts for Undoing the Ecological Incompatibility of Agricultural Technologies: From Ecological Pest Management to Agroecology. Ecocycles 2022, 8, 12–22. [Google Scholar] [CrossRef]
- Karlsson Green, K.; Stenberg, J.A.; Lankinen, Å. Making Sense of Integrated Pest Management (IPM) in the Light of Evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef]
- Adhikari, S.; Bastola, R.; GC, Y.D.; Achhami, B. Twenty-Five Years of Integrated Pest Management in Nepali Agriculture: Lessons, Gaps, and the Way Forward in the Context of Climate Change. J. Integr. Pest. Manag. 2024, 15, 40. [Google Scholar] [CrossRef]
- Ali, M.P.; Clemente-Orta, G.; Kabir, M.M.M.; Haque, S.S.; Biswas, M.; Landis, D.A. Landscape Structure Influences Natural Pest Suppression in a Rice Agroecosystem. Sci. Rep. 2023, 13, 15726. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.W.; Klukowski, Z.; Walczak, B.; Clark, S.J.; Mugglestone, M.A.; Perry, J.N.; Williams, I.H. Spatial Distribution of Pest Insects in Oilseed Rape: Implications for Integrated Pest Management. Agric. Ecosyst. Environ. 2003, 95, 509–521. [Google Scholar] [CrossRef]
- Fernandes, L.D.; Mata, A.S.; Godoy, W.A.C.; Reigada, C. Refuge Distributions and Landscape Connectivity Affect Host-Parasitoid Dynamics: Motivations for Biological Control in Agroecosystems. PLoS ONE 2022, 17, e0267037. [Google Scholar] [CrossRef] [PubMed]
- Mala, M.; Baishnab, M. Dhaka Medical College, Dhaka, Bangladesh Non-Crop Habitat Management: Promoter of Natural Enemies of Crop Pests. Asian J. Crop. Soil. Plan. Nutri. 2022, 6, 233–241. [Google Scholar] [CrossRef]
- Plata, Á.; Tena, A.; Beitia, F.J.; Sousa, J.P.; Paredes, D. Habitat Heterogeneity Reduces Abundance of Invasive Mealybugs in Subtropical Fruit Crops. J. Appl. Ecol. 2024, 61, 292–303. [Google Scholar] [CrossRef]
- Haan, N.L.; Zhang, Y.; Landis, D.A. Predicting Landscape Configuration Effects on Agricultural Pest Suppression. Trends Ecol. Evol. 2020, 35, 175–186. [Google Scholar] [CrossRef]
- Bonsignore, C.P.; van Baaren, J. Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses. Horticulturae 2024, 10, 614. [Google Scholar] [CrossRef]
- Yun, Z.X. Biological Diversity in Support of Ecologically-Based Pest Management at Landscape Level. Acta Ecol. Sin. 2009, 29, 1508–1518. [Google Scholar]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat Management to Suppress Pest Populations: Progress and Prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef]
- Holland, J.M.; Bianchi, F.J.; Entling, M.H.; Moonen, A.-C.; Smith, B.M.; Jeanneret, P. Structure, Function and Management of Semi-Natural Habitats for Conservation Biological Control: A Review of European Studies. Pest Manag. Sci. 2016, 72, 1638–1651. [Google Scholar] [CrossRef]
- Zamberletti, P.; Sabir, K.; Opitz, T.; Bonnefon, O.; Gabriel, E.; Papaïx, J. More Pests but Less Pesticide Applications: Ambivalent Effect of Landscape Complexity on Conservation Biological Control. PLoS Comput. Biol. 2021, 17, e1009559. [Google Scholar] [CrossRef] [PubMed]
- Lourdais, O.; Boissinot, A.; Mathiot, A.; Guiller, G.; Grillet, P.; Morin, S.; Besnard, A. Living in the Hedge: Farmland Reptile Diversity Is Driven by Hedgerow Structural Complexity and Landscape Connectivity. Anim. Conserv. 2025. In press. [Google Scholar] [CrossRef]
- Précigout, P.-A.; Robert, C. Effects of Hedgerows on the Preservation of Spontaneous Biodiversity and the Promotion of Biotic Regulation Services in Agriculture: Towards a More Constructive Relationships between Agriculture and Biodiversity. Bot. Lett. 2022, 169, 176–204. [Google Scholar] [CrossRef]
- Pywell, R.F.; James, K.L.; Herbert, I.; Meek, W.R.; Carvell, C.; Bell, D.; Sparks, T.H. Determinants of Overwintering Habitat Quality for Beetles and Spiders on Arable Farmland. Biol. Conserv. 2005, 123, 79–90. [Google Scholar] [CrossRef]
- Hassan, K.; Pervin, M.; Mondal, F.; Mala, M. Habitat Management: A Key Option to Enhance Natural Enemies of Crop Pest. Univers. J. Plant Sci. 2016, 4, 50–57. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Schellhorn, N.A.; Buckley, Y.M.; Possingham, H.P. Spatial Variability in Ecosystem Services: Simple Rules for Predator-Mediated Pest Suppression. Ecol. Appl. 2010, 20, 2322–2333. [Google Scholar] [CrossRef] [PubMed]
- Koh, I.; Rowe, H.I.; Holland, J.D. Graph and Circuit Theory Connectivity Models of Conservation Biological Control Agents. Ecol. Appl. 2013, 23, 1554–1573. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable Pest Regulation in Agricultural Landscapes: A Review on Landscape Composition, Biodiversity and Natural Pest Control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Hunter, M.D. Landscape Structure, Habitat Fragmentation, and the Ecology of Insects. Agric. For. Entomol. 2002, 4, 159–166. [Google Scholar] [CrossRef]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batáry, P.; DeClerck, F.; Gratton, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When Natural Habitat Fails to Enhance Biological Pest Control—Five Hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
- Barron, M.C.; Liebhold, A.M.; Kean, J.M.; Richardson, B.; Brockerhoff, E.G. Habitat Fragmentation and Eradication of Invading Insect Herbivores. J. Appl. Ecol. 2020, 57, 590–598. [Google Scholar] [CrossRef]
- Atobe, T.; Osada, Y.; Takeda, H.; Kuroe, M.; Miyashita, T. Habitat Connectivity and Resident Shared Predators Determine the Impact of Invasive Bullfrogs on Native Frogs in Farm Ponds. Proc. R. Soc. B. 2014, 281, 20132621. [Google Scholar] [CrossRef]
- Skelsey, P.; With, K.A.; Garrett, K.A. Why Dispersal Should Be Maximized at Intermediate Scales of Heterogeneity. Theor. Ecol. 2013, 6, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Skelsey, P.; With, K.A.; Garrett, K.A. Pest and Disease Management: Why We Shouldn’t Go against the Grain. PLoS ONE 2013, 8, e75892. [Google Scholar] [CrossRef]
- Snelder, T.; Lilburne, L.; Booker, D.; Whitehead, A.; Harris, S.; Larned, S.; Semadeni-Davies, A.; Plew, D.; McDowell, R. Land-Use Suitability Is Not an Intrinsic Property of a Land Parcel. Environ. Manag. 2023, 71, 981–997. [Google Scholar] [CrossRef]
- Jeanneret, P.; Aviron, S.; Alignier, A.; Lavigne, C.; Helfenstein, J.; Herzog, F.; Kay, S.; Petit, S. Agroecology Landscapes. Landsc. Ecol. 2021, 36, 2235–2257. [Google Scholar] [CrossRef]
- Allen, W.; Bosch, O.; Kilvington, M.; Oliver, J.; Gilbert, M. Benefits of Collaborative Learning for Environmental Management: Applying the Integrated Systems for Knowledge Management Approach to Support Animal Pest Control. Environ. Manag. 2001, 27, 215–223. [Google Scholar] [CrossRef]
- Kumari, P.; Jarpla, M.; Reddy, N.A.; Sarangi, S.; Rajkumari; E, V.; Naveenkumar, M.; M, A. Biological Interactions and Management Strategies for the Cotton Bollworm, Helicoverpa Armigera (Lepidoptera: Noctuidae): A Review. J. Exp. Agric. Int. 2024, 46, 490–507. [Google Scholar] [CrossRef]
- Norton, G.A.; Adamson, D.; Aitken, L.G.; Bilston, L.J.; Foster, J.; Frank, B.; Harper, J.K. Facilitating IPM: The Role of Participatory Workshops. Int. J. Pest Manag. 1999, 45, 85–90. [Google Scholar] [CrossRef]
- Kruger, H.P. Adaptive Co-Management for Collaborative Commercial Pest Management: The Case of Industry-Driven Fruit Fly Area-Wide Management. Int. J. Pest Manag. 2016, 62, 336–347. [Google Scholar] [CrossRef]
- Bažok, R.; Lemić, D.; Chiarini, F.; Furlan, L. Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) in Europe: Current Status and Sustainable Pest Management. Insects 2021, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Lundin, O.; Rundlöf, M.; Jonsson, M.; Bommarco, R.; Williams, N.M. Integrated Pest and Pollinator Management—Expanding the Concept. Front. Ecol. Environ. 2021, 19, 283–291. [Google Scholar] [CrossRef]
- Mueller, D.S.; Stewart, A.; Clifford, R.; Iles, L.; Sisson, A.J.; Staker, J. Using Design Interventions to Develop Communication Solutions for Integrated Pest Management. J. Integr. Pest Manag. 2020, 11, 10. [Google Scholar] [CrossRef]
- Saeed Ben Youssef, A. Modern Trends for the Application of Biological Control and Modern Technologies in Agricultural Projects. Int. J. Mod. Agric. Environ. 2023, 1, 26–53. [Google Scholar] [CrossRef]
- Alkema, J.T.; Dicke, M.; Wertheim, B. Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila Suzukii. Insects 2019, 10, 454. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Salotti, I.; Fedele, G. Sharing Decision-Making Tools for Pest Management May Foster Implementation of Integrated Pest Management. Food Sec. 2023, 15, 1459–1474. [Google Scholar] [CrossRef]
- Graham, S.; Metcalf, A.L.; Gill, N.; Niemiec, R.; Moreno, C.; Bach, T.; Ikutegbe, V.; Hallstrom, L.; Ma, Z.; Lubeck, A. Opportunities for Better Use of Collective Action Theory in Research and Governance for Invasive Species Management. Conserv. Biol. 2019, 33, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Bate, A.M.; Jones, G.; Kleczkowski, A.; Touza, J. Modelling the Effectiveness of Collaborative Schemes for Disease and Pest Outbreak Prevention. Ecol. Model. 2021, 442, 109411. [Google Scholar] [CrossRef]
- Otieno, W.; Ochilo, W.; Migiro, L.; Jenner, W.; Kuhlmann, U. Tools for Pest and Disease Management by Stakeholders: A Case Study on Plantwise. In Burleigh Dodds Series in Agricultural Science; Syngenta Foundation for Sustainable Agriculture, Switzerland; Klauser, D., Robinson, M., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 151–174. ISBN 978-1-78676-430-0. [Google Scholar]
- Li, X.; Yang, L.; Lu, Q. Does Social Learning Promote Farmers’ Cooperative Pest Control?—Evidence from Northwestern China. Agriculture 2024, 14, 1749. [Google Scholar] [CrossRef]
- Qiao, D.; Luo, L.; Zhou, C.; Fu, X. The Influence of Social Learning on Chinese Farmers’ Adoption of Green Pest Control: Mediation by Environmental Literacy and Moderation by Market Conditions. Environ. Dev. Sustain. 2023, 25, 13305–13330. [Google Scholar] [CrossRef]
- Milliet, E.; Plancherel, C.; Roulin, A.; Butera, F. The Effect of Collaboration on Farmers’ pro-Environmental Behaviors—A Systematic Review. J. Environ. Psychol. 2023, 93, 102223. [Google Scholar]
- Alene, A.D.; Neuenschwander, P.; Manyong, V.; Coulibaly, O.; Hanna, R. The Impact of IITA-Led Biological Control of Major Pests in Sub-Saharan African Agriculture A Synthesis of Milestones and Empirical Results; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2005. [Google Scholar]
- Brenner, B.L.; Markowitz, S.; Rivera, M.; Romero, H.; Weeks, M.; Sanchez, E.; Deych, E.; Garg, A.; Godbold, J.; Wolff, M.S.; et al. Integrated Pest Management in an Urban Community: A Successful Partnership for Prevention. Environ. Health Perspect. 2003, 111, 1649–1653. [Google Scholar] [CrossRef]
- FAO; United Nations Development Program (UNDP); World Food Programme (WFP); International Committee of the Red Cross (ICRC). Yemen Food Security Response and Resilience Project Parent Fund (PF) and Additional Fund (AF) UPDATED PEST MANAGEMENT PLAN (PMP); Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Lence, S.H.; Singerman, A. When Does Voluntary Coordination Work? Evidence from Area-Wide Pest Management. Am. J. Agric. Econ. 2023, 105, 243–264. [Google Scholar] [CrossRef]
- UNEP; FAO; UNDP. Rethinking Our Food Systems: A Guide for Multi-Stakeholder Collaboration; United Nations Environment Programme (UNEP): Nairobi, Kenya; Food and Agriculture Organization (FAO): Rome, Italy; United Nations Development Programme (UNDP): New York, NY, USA, 2023. [Google Scholar]
- Abd-Elgawad, M.M.M. Upgrading Strategies for Managing Nematode Pests on Profitable Crops. Plants 2024, 13, 1558. [Google Scholar] [CrossRef]
- Klein, I.; Oppelt, N.; Kuenzer, C. Application of Remote Sensing Data for Locust Research and Management—A Review. Insects 2021, 12, 233. [Google Scholar] [CrossRef]
- Mpisane, K.; Kganyago, M.; Munghemezulu, C.; Price, R.; Nduku, L. A Systematic Review of Remote Sensing Technologies and Techniques for Agricultural Insect Pest Monitoring: Lessons for Locustana pardalina (Brown Locust) Control in South Africa. Front. Remote Sens. 2025, 6, 1571149. [Google Scholar] [CrossRef]
- Paul, R.L.; Hagler, J.R.; Janasov, E.G.; McDonald, N.S.; Voyvot, S.; Lee, J.C. An Effective Fluorescent Marker for Tracking the Dispersal of Small Insects with Field Evidence of Mark–Release–Recapture of Trissolcus japonicus. Insects 2024, 15, 487. [Google Scholar] [CrossRef] [PubMed]
- Novaes, D.R.; Sujii, P.S.; Rodrigues, C.A.; Silva, K.M.N.B.; Machado, A.F.P.; Inoue-Nagata, A.K.; Nakasu, E.Y.T.; Togni, P.H.B. Natural Habitat Connectivity and Organic Management Modulate Pest Dispersal, Gene Flow, and Natural Enemy Communities. Ecol. Appl. 2024, 34, e2938. [Google Scholar] [CrossRef] [PubMed]
- Lavandero, B.; Wratten, S.; Hagler, J.; Jervis, M. The Need for Effective Marking and Tracking Techniques for Monitoring the Movements of Insect Predators and Parasitoids. Int. J. Pest Manag. 2004, 50, 147–151. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect Pest Monitoring with Camera-Equipped Traps: Strengths and Limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Christakakis, P.; Papadopoulou, G.; Mikos, G.; Kalogiannidis, N.; Ioannidis, D.; Tzovaras, D.; Pechlivani, E.M. Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence. Technologies 2024, 12, 101. [Google Scholar] [CrossRef]
- Sapoukhina, N.; Tyutyunov, Y.; Arditi, R. The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model. Am. Nat. 2003, 162, 61–76. [Google Scholar] [CrossRef]
- de Oliveira Alves, R.B.; Tomasiello, D.B.; de Almeida, C.M.; Rosalen, D.L.; Pereira, L.H.; de Silva, H.P.; Rodrigues, C.L. Agent-Based Spatial Dynamic Modeling of Diatraea Saccharalis and the Natural Parasites Cotesia Flavipes and Trichogramma Galloi in Sugarcane Crops. Remote Sens. 2024, 16, 2693. [Google Scholar] [CrossRef]
- Zitoun, J.-L.; Rousseau, R.; Gourbière, S. Source-Sink Dynamics Explains the Co-Existence of the Invasive Pest Dryocosmus kuriphilus and Its Biological Control Agent Torymus Sinensis across French Eastern Pyrenees. J. R. Soc. Interface 2025, 22, 20250283. [Google Scholar] [CrossRef]
- Aziz, D.; Rafiq, S.; Saini, P.; Ahad, I.; Gonal, B.; Rehman, S.A.; Rashid, S.; Saini, P.; Rohela, G.K.; Aalum, K.; et al. Remote Sensing and Artificial Intelligence: Revolutionizing Pest Management in Agriculture. Front. Sustain. Food Syst. 2025, 9, 1551460. [Google Scholar] [CrossRef]
- Leybourne, D.J.; Musa, N.; Yang, P. Can Artificial Intelligence Be Integrated into Pest Monitoring Schemes to Help Achieve Sustainable Agriculture? An Entomological, Management and Computational Perspective. Agric. For. Entomol. 2025, 27, 8–17. [Google Scholar] [CrossRef]
- Lustig, A.; James, A.; Anderson, D.; Plank, M. Pest Control at a Regional Scale: Identifying Key Criteria Using a Spatially Explicit, Agent-Based Model. J. Appl. Ecol. 2019, 56, 1515–1527. [Google Scholar] [CrossRef]
- Rebaudo, F.; Carpio, C.; Crespo-Pérez, V.; Herrera, M.; de Scurrah, M.M.; Canto, R.C.; Montañez, A.G.; Bonifacio, A.; Mamani, M.; Saravia, R.; et al. Agent-Based Models and Integrated Pest Management Diffusion in Small Scale Farmer Communities. In Integrated Pest Management: Experiences with Implementation, Global Overview; Peshin, R., Pimentel, D., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 4, pp. 367–383. ISBN 978-94-007-7802-3. [Google Scholar]
- Drechsler, M. Ecological-Economic Modelling for Biodiversity Conservation; Cambridge University Press: Cambridge, UK, 2020; ISBN 978-1-108-49376-5. [Google Scholar]
- García-Chapeton, G.A.; Toxopeus, A.G.; Olivero, J.; Ostermann, F.O.; De By, R.A. Combining Favorability Modeling with Collaborative Geo-visual Analysis to Improve Agricultural Pest Management. Trans. GIS 2021, 25, 985–1008. [Google Scholar] [CrossRef]
- Kruger, H.P. Designing Local Institutions for Cooperative Pest Management to Underpin Market Access: The Case of Industry-Driven Fruit Fly Area-Wide Management. Int. J. Commons 2016, 10, 176–199. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Tripodi, A.; Montgomery, K. SAFARIS: A Spatial Analytic Framework for Pest Forecast Systems. Front. Insect Sci. 2023, 3, 1198355. [Google Scholar] [CrossRef]
- Dentzman, K. Governance of Emerging Pests and Pathogens in Production Landscapes: Pesticide Resistance and Collaborative Governance. Curr. Opin. Environ. Sustain. 2022, 58, 101220. [Google Scholar] [CrossRef]
- Niemiec, R.M.; Ardoin, N.M.; Wharton, C.B.; Asner, G.P. Motivating Residents to Combat Invasive Species on Private Lands: Social Norms and Community Reciprocity. Ecol. Soc. 2016, 21, art30. [Google Scholar] [CrossRef]
- Eckerberg, K.; Bjärstig, T.; Zachrisson, A. Incentives for Collaborative Governance: Top-Down and Bottom-Up Initiatives in the Swedish Mountain Region. Mt. Res. Dev. 2015, 35, 289–298. [Google Scholar] [CrossRef]
- Han, P.; Lavoir, A.-V.; Rodriguez-Saona, C.; Desneux, N. Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. Annu. Rev. Entomol. 2022, 67, 239–259. [Google Scholar] [CrossRef]
- Rebaudo, F.; Dangles, O. Coupled Information Diffusion–Pest Dynamics Models Predict Delayed Benefits of Farmer Cooperation in Pest Management Programs. PLoS Comput. Biol. 2011, 7, e1002222. [Google Scholar] [CrossRef]
- Izuchukwu, A.; Erezi, E.; David Emeka, E. Assessing the Impact of Farmer-to-Farmer Communication Networks on Knowledge Sharing and Adoption of Sustainable Agricultural Practices in Africa. Int. J. Arab.-Engl. Stud. 2023, 9, 58–76. [Google Scholar] [CrossRef]
- Bottrell, D.G.; Schoenly, K.G. Integrated Pest Management for Resource-Limited Farmers: Challenges for Achieving Ecological, Social and Economic Sustainability. J. Agric. Sci. 2018, 156, 408–426. [Google Scholar] [CrossRef]
- Cong, R.-G.; Smith, H.G.; Olsson, O.; Brady, M. Managing Ecosystem Services for Agriculture: Will Landscape-Scale Management Pay? Ecol. Econ. 2014, 99, 53–62. [Google Scholar] [CrossRef]
- Brewer, M.J.; Goodell, P.B. Approaches and Incentives to Implement Integrated Pest Management That Addresses Regional and Environmental Issues. Annu. Rev. Entomol. 2012, 57, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Tilman, A.R.; Haight, R.G. Public Policy for Management of Forest Pests within an Ownership Mosaic. Ecol. Econ. 2024, 234, 108602. [Google Scholar] [CrossRef]
- Raszick, T.J. Special Collection: Advocacy in Action: Tackling Invasive Species through Collaboration, Policy, and Public Engagement Boll Weevil Eradication: A Success Story of Science in the Service of Policy and Industry. Ann. Entomol. Soc. Am. 2021, 114, 702–708. [Google Scholar] [CrossRef]
- Smith, J.W. Boll Weevil Eradication: Area-Wide Pest Management. Ann. Entomol. Soc. Am. 1998, 91, 239–247. [Google Scholar] [CrossRef]
- Vincent, E.M.R.; Hill, E.M.; Parnell, S. Modelling the Effectiveness of Integrated Pest Management Strategies for the Control of Septoria Tritici Blotch. PLoS Comput. Biol. 2025, 21, e1013352. [Google Scholar] [CrossRef]
- Das, N.; Gs, S.; Teja, K.S.S.; Hazarika, S.; E, V.M.; S, R.J.; Devi, L.S.; Bala, B. Integrated Pest Management: Success Stories and Key Takeaways. Uttar Pradesh J. Zool. 2024, 45, 229–244. [Google Scholar] [CrossRef]
- Kruger, H. “Smart Regulation” and Community Cooperation in Australia’s Modern Biosecurity Context. Rural. Soc. 2018, 27, 161–176. [Google Scholar] [CrossRef]
- Ndlela, S.; Niassy, S.; Mohamed, S.A. Important Alien and Potential Native Invasive Insect Pests of Key Fruit Trees in Sub-Saharan Africa: Advances in Sustainable Pre- and Post-Harvest Management Approaches. CABI Agric. Biosci. 2022, 3, 7. [Google Scholar] [CrossRef]
- Downes, S.; Kriticos, D.; Parry, H.; Paull, C.; Schellhorn, N.; Zalucki, M.P. A Perspective on Management of Helicoverpa Armigera: Transgenic Bt Cotton, IPM, and Landscapes. Pest Manag. Sci. 2017, 73, 485–492. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. Diamondback Moth, Plutella xylostella (L.) in Southern Africa: Research Trends, Challenges and Insights on Sustainable Management Options. Sustainability 2017, 9, 91. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Adinarayana, J.; Sudharsan, D. Geospatial Data Mining for Agriculture Pest Management—A Framework. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–6. [Google Scholar]
- Rund, S.S.C.; Braak, K.; Cator, L.; Copas, K.; Emrich, S.J.; Giraldo-Calderón, G.I.; Johansson, M.A.; Heydari, N.; Hobern, D.; Kelly, S.A.; et al. MIReAD, a Minimum Information Standard for Reporting Arthropod Abundance Data. Sci. Data 2019, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The Role of Agri-environment Schemes in Conservation and Environmental Management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Hasler, B.; Termansen, M.; Nielsen, H.Ø.; Daugbjerg, C.; Wunder, S.; Latacz-Lohmann, U. European Agri-Environmental Policy: Evolution, Effectiveness, and Challenges. Rev. Environ. Econ. Policy 2022, 16, 105–125. [Google Scholar] [CrossRef]
- Froidevaux, J.S.P.; Boughey, K.L.; Hawkins, C.L.; Broyles, M.; Jones, G. Managing Hedgerows for Nocturnal Wildlife: Do Bats and Their Insect Prey Benefit from Targeted Agri-environment Schemes? J. Appl. Ecol. 2019, 56, 1610–1623. [Google Scholar] [CrossRef]
- Boetzl, F.A.; Krauss, J.; Heinze, J.; Hoffmann, H.; Juffa, J.; König, S.; Krimmer, E.; Prante, M.; Martin, E.A.; Holzschuh, A.; et al. A Multitaxa Assessment of the Effectiveness of Agri-Environmental Schemes for Biodiversity Management. Proc. Natl. Acad. Sci. USA 2021, 118, e2016038118. [Google Scholar] [CrossRef]
- Ait Sidhoum, A.; Canessa, C.; Sauer, J. Effects of Agri-Environment Schemes on Farm-Level Eco-Efficiency Measures: Empirical Evidence from EU Countries. J. Agric. Econ. 2023, 74, 551–569. [Google Scholar] [CrossRef]
- Cullen, P.; Hynes, S.; Ryan, M.; O’Donoghue, C. More than Two Decades of Agri-Environment Schemes: Has the Profile of Participating Farms Changed? J. Environ. Manag. 2021, 292, 112826. [Google Scholar] [CrossRef]
- Wätzold, F.; Drechsler, M. Agglomeration Payment, Agglomeration Bonus or Homogeneous Payment? Resour. Energy Econ. 2014, 37, 85–101. [Google Scholar] [CrossRef]
- Westerink, J.; Jongeneel, R.; Polman, N.; Prager, K.; Franks, J.; Dupraz, P.; Mettepenningen, E. Collaborative Governance Arrangements to Deliver Spatially Coordinated Agri-Environmental Management. Land Use Policy 2017, 69, 176–192. [Google Scholar] [CrossRef]
- Bruzzese, S.; Tolić Mandić, I.; Tišma, S.; Blanc, S.; Brun, F.; Vuletić, D. A Framework Proposal for the Ex Post Evaluation of a Solution-Driven PES Scheme: The Case of Medvednica Nature Park. Sustainability 2023, 15, 8101. [Google Scholar] [CrossRef]
- Wolfe, J.D.; Elizondo, P. Integrating Wildlife Conservation into Ecosystem Service Payments and Carbon Offsets: A Case Study from Costa Rica. Conserv. Sci. Pract. 2020, 2, e173. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Li, Z. Wetland Ecological Restoration and Payment for Ecosystem Service Standard: A Case Study of Ganjiangyuan National Wetland Park. Wetlands 2023, 43, 22. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Can Payment for Ecosystem Services Schemes Be an Alternative Solution to Achieve Sustainable Environmental Development? A Critical Comparison of Implementation between Europe and China. Resources 2018, 7, 40. [Google Scholar] [CrossRef]
- Bladon, A.J.; Short, K.M.; Mohammed, E.Y.; Milner-Gulland, E.J. Payments for Ecosystem Services in Developing World Fisheries. Fish Fish. 2016, 17, 839–859. [Google Scholar] [CrossRef]
- Polasky, S.; Segerson, K. Integrating Ecology and Economics in the Study of Ecosystem Services: Some Lessons Learned. Annu. Rev. Resour. Econ. 2009, 1, 409–434. [Google Scholar] [CrossRef]
- Polasky, S.; Lewis, D.J.; Plantinga, A.J.; Nelson, E. Implementing the Optimal Provision of Ecosystem Services. Proc. Natl. Acad. Sci. USA 2014, 111, 6248–6253. [Google Scholar] [CrossRef]
- Limbach, K. What Role for Environmental Cooperatives in Collective Agri-Environmental Schemes? J. Environ. Plan. Manag. 2024, 67, 1409–1433. [Google Scholar] [CrossRef]
- Barghusen, R.; Sattler, C.; Deijl, L.; Weebers, C.; Matzdorf, B. Motivations of Farmers to Participate in Collective Agri-Environmental Schemes: The Case of Dutch Agricultural Collectives. Ecosyst. People 2021, 17, 539–555. [Google Scholar] [CrossRef]
- de Vries, J.R.; van der Zee, E.; Beunen, R.; Kat, R.; Feindt, P.H. Trusting the People and the System. The Interrelation Between Interpersonal and Institutional Trust in Collective Action for Agri-Environmental Management. Sustainability 2019, 11, 7022. [Google Scholar] [CrossRef]
- Van Dijk, W.F.A.; Lokhorst, A.M.; Berendse, F.; De Snoo, G.R. Collective Agri-Environment Schemes: How Can Regional Environmental Cooperatives Enhance Farmers’ Intentions for Agri-Environment Schemes? Land Use Policy 2015, 42, 759–766. [Google Scholar] [CrossRef]
- Kam, H. Incentivising Public Goods Delivery in the UK through the Lens of Theories of Practice and Theory of Capital. Sociol. Rural. 2024, 64, 639–661. [Google Scholar] [CrossRef]
- Nguyen, C.; Latacz-Lohmann, U.; Hanley, N.; Schilizzi, S.; Iftekhar, S. Spatial Coordination Incentives for Landscape-Scale Environmental Management: A Systematic Review. Land Use Policy 2022, 114, 105936. [Google Scholar] [CrossRef]
- Parkhurst, G.M.; Shogren, J.F.; Bastian, C.; Kivi, P.; Donner, J.; Smith, R.B.W. Agglomeration Bonus: An Incentive Mechanism to Reunite Fragmented Habitat for Biodiversity Conservation. Ecol. Econ. 2002, 41, 305–328. [Google Scholar] [CrossRef]
- Parkhurst, G.M.; Shogren, J.F. Smart Subsidies for Conservation. Am. J. Agri Econ. 2008, 90, 1192–1200. [Google Scholar] [CrossRef]
- Cooper, R. Coordination Games. In The New Palgrave Dictionary of Economics and the Law: Volume 1–3: A-Z; Newman, P., Ed.; Palgrave Macmillan UK: London, UK, 2002; pp. 473–478. ISBN 978-1-349-74173-1. [Google Scholar]
- Parkhurst, G.M.; Shogren, J.F. Spatial Incentives to Coordinate Contiguous Habitat. Ecol. Econ. 2007, 64, 344–355. [Google Scholar] [CrossRef]
- Banerjee, S.; De Vries, F.P.; Hanley, N.; Soest, D.P. van The Impact of Information Provision on Agglomeration Bonus Performance: An Experimental Study on Local Networks. Am. J. Agric. Econ. 2014, 96, 1009–1029. [Google Scholar] [CrossRef]
- Liu, Z.; Banerjee, S.; Cason, T.N.; Hanley, N.; Liu, Q.; Xu, J.; Kontoleon, A. Spatially Coordinated Conservation Auctions: A Framed Field Experiment Focusing on Farmland Wildlife Conservation in China. Am. J. Agri Econ. 2024, 106, 1354–1379. [Google Scholar] [CrossRef]
- Krämer, J.E.; Wätzold, F. The Agglomeration Bonus in Practice—An Exploratory Assessment of the Swiss Network Bonus. J. Nat. Conserv. 2018, 43, 126–135. [Google Scholar] [CrossRef]
- Huber, R.; Zabel, A.; Schleiffer, M.; Vroege, W.; Brändle, J.M.; Finger, R. Conservation Costs Drive Enrolment in Agglomeration Bonus Scheme. Ecol. Econ. 2021, 186, 107064. [Google Scholar] [CrossRef]
- Zabel, A. Biodiversity-Based Payments on Swiss Alpine Pastures. Land Use Policy 2019, 81, 153–159. [Google Scholar] [CrossRef]
- Drechsler, M. Performance of Input- and Output-Based Payments for the Conservation of Mobile Species. Ecol. Econ. 2017, 134, 49–56. [Google Scholar] [CrossRef]
- Gong, J.; Du, H.; Sun, Y. Collaboration among Governments, Pesticide Operators, and Farmers in Regulating Pesticide Operations for Agricultural Product Safety. Agriculture 2023, 13, 2288. [Google Scholar] [CrossRef]
- Tiffany, B.; Chaudhry, T.; Hofstetter, R.W.; Aslan, C. The Impact of Administrative Partitioning on the Regional Effectiveness of Forest Pest Management in Protected Area-Centered Ecosystems. Forests 2022, 13, 395. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape Moderation of Biodiversity Patterns and Processes—Eight Hypotheses. Biol. Rev. Camb. Philos. Soc. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Fahrig, L. Rethinking Patch Size and Isolation Effects: The Habitat Amount Hypothesis. J. Biogeogr. 2013, 40, 1649–1663. [Google Scholar] [CrossRef]
- Brévault, T.; Clouvel, P. Pest Management: Reconciling Farming Practices and Natural Regulations. Crop Prot. 2019, 115, 1–6. [Google Scholar] [CrossRef]
- Primdahl, J.; Kristensen, L.S.; Busck, A.G. The Farmer and Landscape Management: Different Roles, Different Policy Approaches. Geogr. Compass 2013, 7, 300–314. [Google Scholar] [CrossRef]
- Beckmann, V.; Wesseler, J. How Labour Organization May Affect Technology Adoption: An Analytical Framework Analysing the Case of Integrated Pest Management. Environ. Dev. Econ. 2003, 8, 437–450. [Google Scholar] [CrossRef]
- Díaz-Siefer, P.; Fontúrbel, F.E.; Berasaluce, M.; Huenchuleo, C.; Lal, R.; Mondaca, P.; Celis-Diez, J.L. The Market–Society–Policy Nexus in Sustainable Agriculture. Environ. Dev. Sustain. 2022, 26, 29981–30000. [Google Scholar] [CrossRef]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and Policies for Integrated Pest Management in Europe: A Review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
- Sharma, S. Cultivating sustainable solutions: Integrated pest management (IPM) for safer and greener agronomy. Cop. Sust. Manag. 2023, 1, 103–108. [Google Scholar] [CrossRef]
- Schellhorn, N.A.; Macfadyen, S.; Bianchi, F.J.J.A.; Williams, D.G.; Zalucki, M.P. Managing Ecosystem Services in Broadacre Landscapes: What Are the Appropriate Spatial Scales? Aust. J. Exp. Agric. 2008, 48, 1549. [Google Scholar] [CrossRef]
- Salliou, N.; Muradian, R.; Barnaud, C. Governance of Ecosystem Services in Agroecology: When Coordination Is Needed but Difficult to Achieve. Sustainability 2019, 11, 1158. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Bischoff-Schaefer, M.; Bluemel, S.; Dachbrodt-Saaydeh, S.; Dreux, L.; Jansen, J.-P.; Kiss, J.; Köhl, J.; Kudsk, P.; Malausa, T.; et al. Identifying Obstacles and Ranking Common Biological Control Research Priorities for Europe to Manage Most Economically Important Pests in Arable, Vegetable and Perennial Crops. Pest Manag. Sci. 2017, 73, 14–21. [Google Scholar] [CrossRef]
- Prager, K. Agri-Environmental Collaboratives for Landscape Management in Europe. Curr. Opin. Environ. Sustain. 2015, 12, 59–66. [Google Scholar] [CrossRef]
- Falco, F.L.; Feitelson, E.; Dayan, T. Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. Case A Shift Landsc.-Scale Design. Land 2021, 10, 846. [Google Scholar] [CrossRef]
- Lurgi, M.; Wells, K.; Kennedy, M.; Campbell, S.; Fordham, D.A. A Landscape Approach to Invasive Species Management. PLoS ONE 2016, 11, e0160417. [Google Scholar] [CrossRef] [PubMed]
- Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial Agent-Based Models for Socio-Ecological Systems: Challenges and Prospects. Environ. Model. Softw. 2013, 45, 1–7. [Google Scholar] [CrossRef]
| Challenge | Why it Matters | Ways Forward (from This Review) | Policy/Instrument Examples |
|---|---|---|---|
| Ambiguous effects of fragmentation | Both can hinder enemies and slow pests; outcomes are scale-dependent | Use spatio-temporal diagnostics; design spatially & temporally targeted interventions; enhance landscape complexity via semi-natural elements | IPM planning with habitat conservation; targeted habitat placement |
| Agricultural intensification | Reduces connectivity and habitat for natural enemies | Extensification (lower-input, more extensive management) and diversification of agroecological practices | Support for hedgerows, margins, diversified rotations |
| Scale mismatch (beyond single fields/farms) | Pest/enemy dynamics operate across parcels → individual action underperforms | Area-Wide Pest Management (AWPM); organize actions at block/landscape scale; farmer collaboration | Coordinated spraying/biocontrol windows; block planning |
| Knowledge, trust, and competing interests | Low ecological knowledge and mistrust impede cooperation | Participatory governance, capacity building, social learning, fair benefit-sharing | Training/extension; farmer groups/cooperatives |
| Uneven costs & benefits | Edge parcels bear higher costs; spillovers create free-riding | Collective payments; coordination incentives; adjust payments for spatial roles (e.g., edges/corridors) | AES/PES with group contracts; agglomeration/contiguity bonuses |
| Policies not scaled to space | Local contracts overlook corridors and pest hotspots, allowing pests to move back into treated areas | Landscape-scale policy design that targets corridors & hotspots; align incentives across neighbors | Landscape-aware AESs/PESs; spatial targeting criteria |
| Implementation & uptake | Good concepts, limited pest-control applications so far | Pilot programs; farmer participation; track outcomes; adapt and improve methods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezhadkheirollah, S.; Drechsler, M. Collaborative Approaches and Instruments for the Spatial Management of Agricultural Pests. Reg. Sci. Environ. Econ. 2025, 2, 37. https://doi.org/10.3390/rsee2040037
Nezhadkheirollah S, Drechsler M. Collaborative Approaches and Instruments for the Spatial Management of Agricultural Pests. Regional Science and Environmental Economics. 2025; 2(4):37. https://doi.org/10.3390/rsee2040037
Chicago/Turabian StyleNezhadkheirollah, Somaiyeh, and Martin Drechsler. 2025. "Collaborative Approaches and Instruments for the Spatial Management of Agricultural Pests" Regional Science and Environmental Economics 2, no. 4: 37. https://doi.org/10.3390/rsee2040037
APA StyleNezhadkheirollah, S., & Drechsler, M. (2025). Collaborative Approaches and Instruments for the Spatial Management of Agricultural Pests. Regional Science and Environmental Economics, 2(4), 37. https://doi.org/10.3390/rsee2040037
