Seasonal Variation in the Diversity, Abundance, and Spatial Distribution of Terrestrial Mammals in the Pénéssoulou Classified Forest
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Collection
2.3. Statistical Analysis
2.3.1. Estimating Mammal Abundance and Diversity
2.3.2. Estimating the Spatial Distribution of Mammal Species in the Forest
2.3.3. Seasonal Variations in Diversity and Abundance of Mammal Species in the Forest
3. Results
3.1. Recorded Observations and Diversity of Mammal Species
3.2. Seasonal Variation in Diversity, Abundance, and Species Distribution
3.3. Environmental Variables Influencing Species Richness and Abundance
3.4. Seasonal Variations in the Spatial Distribution of Mammal Species
3.4.1. Body Size Distribution of Mammal Species According to the Season
3.4.2. Mammal Species Abundance Distribution Across Vegetation Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Dr | Doctor |
| VIF | Variance Inflation Factor |
| GLM | Generalized Linear Model |
| WL | Woodland |
| DF | Dense forest (dry woodland) |
| GF | Gallery forest |
| CFM | Crop–field mosaic |
| TSS | Tree and shrub savanna |
| DFWP | Distance from water points |
| β | Model coefficient |
| se | Standard error |
| z | Statistic |
| p | Likelihood of significance |
| OR | Observed richness |
| E | Equitability |
| H′ | Shannon diversity index |
| H′max | Maximum value of H′ |
| D | Simpson’s unbiased diversity index |
| AIC | Akaike Information Criterion |
Appendix A
| Types of Habitat | Description |
|---|---|
| Tree and Shrub Savanna | This habitat is largely associated with the Sudanian vegetation zone. It comprises savanna woodland and tree and shrub savanna dominated by Isoberlinia species. The tree layer in savanna woodland is 8–15 m tall with 40–80% cover. Common species in savanna land include Isoberlinia doka, Isoberlinia tomentosa, Anogeissus leiocarpa, Pterocarpus erinaceus, Vitellaria paradoxa, Burkea africana, Prosopis africana, Pericopsis laxiflora, and Afzelia africana. Shrub savannas (undifferentiated Sudanian woodland) have sparse tree cover (<20%) or no tree cover, with species like Anogeissus leiocarpa, Vitellaria paradoxa, Pterocarpus erinaceus, Lannea acida, Burkea africana, Combretum species, Balanites aegyptiaca, and Acacia species. Soils are mostly ferruginous. |
| Gallery Forest | Gallery forests are riparian forests along rivers. Species commonly found in gallery forests include Berlinia grandiflora, Cola laurifolia, Parinari congensis, Cynometra megalophylla, and Uapaca togoensis. They occur as belts along watercourses within the Sudanian plains and transition zones. These forest types are influenced by soil moisture and climate and harbor species linked to both Guineo-Congolian and Sudanian chorological affinities. |
| Woodland | Woodlands are part of the Sudanian zone in central and northern Benin. They are dominated by Isoberlinia species and associated hardwoods. Organic structure includes a tree layer 8–15 m high. Important species include Isoberlinia doka, Isoberlinia tomentosa, Pterocarpus erinaceus, Burkea africana, and Afzelia africana. Soils tend to be ferruginous, with a unimodal rainfall regime. |
| Dry Woodland or Dense Forest | A drier type of semi-deciduous forest found mainly in central–western Benin (Bassila district). Characterized by the absence of Triplochiton scleroxylon and the presence of Khaya grandifoliola and Aubrevillea kerstingii. Soils are ferrallitic with concretions. Rainfall is unimodal (1200–1300 mm). Species composition demonstrates a transition from humid Guineo-Congolian towards drier Sudanian elements. |
| Farms and Fallows | Agricultural land dominates large portions of the Dahomey Gap, where original vegetation has been heavily reduced. The lowland vegetation of the Gap is a mosaic with farms, fallows, and grasslands intermixed with small forest islands. Natural vegetation patches include semi-deciduous and swamp forests. Farming and shifting agriculture have replaced much of the original forest and savanna habitats. Farms and fallows are dominated by two species: Vitellaria paradoxa and Parkia biglobosa. |
References
- Manyangadze, T.; Chimbari, M.J.; Rubaba, O.; Soko, W.; Mukaratirwa, S. Spatial and seasonal distribution of Bulinus globosus and Biomphalaria pfeifferi in Ingwavuma, uMkhanyakude district, KwaZulu-Natal, South Africa: Implications for schistosomiasis transmission at micro-geographical scale. Parasites Vectors 2021, 14, 222. [Google Scholar] [CrossRef]
- Selier, J.; Slotow, R.; Di Minin, E. Large mammal distribution in a Transfrontier Landscape: Trade-offs between resource availability and human disturbance. Biotropica 2015, 47, 389–397. [Google Scholar] [CrossRef]
- Loiseau, N.; Mouquet, N.; Casajus, N.; Grenié, M.; Guéguen, M.; Maitner, B.; Mouillot, D.; Ostling, A.; Renaud, J.; Tucker, C. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 2020, 11, 5071. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, M.; Rondinini, C.; Rhodes, J.R.; Burbidge, A.A.; Cristiano, A.; Watson, J.E.M.; Woinarski, J.C.Z.; Di Marco, M. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 2020, 11, 2840. [Google Scholar] [CrossRef] [PubMed]
- Rovero, F.; Kays, R. Camera trapping for conservation. In Conservation Technology; Wich, S.A., Piel, A.K., Eds.; Oxford University Press: Oxford, UK, 2021; pp. 79–101. [Google Scholar]
- Minton, G.; Collins, T.; Findlay, K.; Ersts, P.; Rosenbaum, H.; Berggren, P.; Baldwin, R. Seasonal distribution, abundance, habitat use and population identity of humpback whales in Oman. J. Cetacean Res. Manag. 2020, 22, 185–198. [Google Scholar] [CrossRef]
- Fisher, J.T.; Anholt, B.; Volpe, J.P. Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecol. Evol. 2011, 1, 517–528. [Google Scholar] [CrossRef]
- Hopcraft, J.G.C.; Anderson, T.M.; Pérez-Vila, S.; Mayemba, E.; Olff, H. Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. J. Anim. Ecol. 2012, 81, 201–213. [Google Scholar] [CrossRef]
- Yaworsky, P.M.; Hussain, S.T.; Riede, F. Climate-driven habitat shifts of high-ranked prey species structure Late Upper Paleolithic hunting. Sci. Rep. 2023, 13, 4238. [Google Scholar] [CrossRef]
- Bergstrom, B.J.; Scruggs, S.B.; Vieira, E.M. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. Front. Ecol. Evol. 2023, 11, 1017361. [Google Scholar] [CrossRef]
- Bergstrom, B.J.; Dickman, C.R.; Monadjem, A.; Vieira, E.M. Drivers of small-mammal community structure in tropical savannas. Front. Ecol. Evol. 2023, 11, 1173638. [Google Scholar] [CrossRef]
- Raven, P.H.; Gereau, R.E.; Phillipson, P.B.; Chatelain, C.; Jenkins, C.N. The distribution of biodiversity richness in the tropics. Sci. Adv. 2020, 6, eabc6228. [Google Scholar] [CrossRef]
- Adomou, A.C. Vegetation Patterns and Environmental Gradients in Benin: Implications for Biogeography and Conservation. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. [Google Scholar]
- Dossa, L.O.S.N.; Dassou, G.H.; Adomou, A.C.; Ahononga, F.C.; Biaou, S. Dynamique spatio-temporelle et vulnérabilité des unités d’occupation du sol de la Forêt Classée de Pénéssoulou de 1995 à 2015 (Bénin, Afrique de l’Ouest). Sci. Vie Terre Agron. 2021, 9, 55–63. [Google Scholar]
- Djagoun, C.A.; Zanvo, S.; Azihou, F.; Nago, G.; Djagoun, J.; Vodouhê, F.; Djossa, B.; Assogbadjo, A.E.; Leprieur, F.; Sinsin, B.; et al. Assessing the impact of the wildlife trade in West Africa (Benin): Functional diversity matters too. Glob. Ecol. Conserv. 2023, 47, e02630. [Google Scholar] [CrossRef]
- ENETWILD-Consortium; Guerrasio, T.; Blanco-Aguiar, J.A.; Casaer, J.; Palencia, P.; Acevedo, P.; Jansen, P.; Rowcliffe, M.; Guerrasio, T.; Scandura, M.; et al. Report of the ENETWILD training “Second online course on the use of camera trapping for monitoring wildlife and density estimation in the framework of the European Observatory of Wildlife-EOW”. EFSA Support. Publ. 2022, 19, 7708E. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Bernard, H.; Baking, E.L.; Giordano, A.J.; Wearn, O.R.; Ahmad, A.H. Terrestrial mammal species richness and composition in three small forest patches within an oil palm landscape in Sabah, Malaysian Borneo. Mammal Study 2014, 39, 141–154. [Google Scholar] [CrossRef]
- Mohamed, A.; Sollmann, R.; Bernard, H.; Ambu, L.N.; Lagan, P.; Mannan, S.; Hofer, H.; Wilting, A. Density and habitat use of the leopard cat (Prionailurus bengalensis) in three commercial forest reserves in Sabah, Malaysian Borneo. J. Mammal. 2013, 94, 82–89. [Google Scholar] [CrossRef]
- Fegraus, E.H.; Lin, K.; Ahumada, J.A.; Baru, C.; Chandra, S.; Youn, C. Data acquisition and management software for camera trap data: A case study from the TEAM Network. Ecol. Inform. 2011, 6, 345–353. [Google Scholar] [CrossRef]
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference; JHU Press: Baltimore, MD, USA, 2005; Volume 20, pp. 41–42. [Google Scholar] [CrossRef]
- Niedballa, J.; Sollmann, R.; Courtiol, A.; Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 2016, 7, 1457–1462. [Google Scholar] [CrossRef]
- Jenks, K.E.; Chanteap, P.; Kanda, D.; Peter, C.; Redford, T.; Antony, J.L.; Howard, J.; Leimgruber, P. Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses—An example from Khao Yai National Park, Thailand. Trop. Conserv. Sci. 2011, 4, 113–131. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R package version 2.6-4; The Comprehensive R Archive Network: Vienna, Austria, 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 22 August 2025).
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 79–423. [Google Scholar] [CrossRef]
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Tiffeau-Mayer, A. Unbiased estimation of sampling variance for Simpson’s diversity index. Phys. Rev. E 2024, 109, 064411. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Sinsin, B.; Tehou, A.C.; Daouda, I.; Saidou, A. Abundance and species richness of larger mammals in Pendjari National Park in Benin. Mammalia 2002, 66, 369–380. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, H.; Xie, B.; Gong, Y.; Ge, J.; Feng, L. Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob. Ecol. Conserv. 2020, 21, e00897. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef]
- McCarthy, B.C. Measuring biological diversity. J. Torrey Bot. Soc. 2004, 131, 277–285. [Google Scholar] [CrossRef]
- Nago, S.G.A.; Tchegnonsi, J.L.M.; Ahononga, C.F.; Sagbo, R.R.S.; Kake, G.; Ganso, R. Recolonisation de la forêt classée de Pénéssoulou par la faune mammalienne. Rev. Ivoir. Sci. Technol. 2024, 43, 260–280. [Google Scholar]
- Chao, A.; Gotelli, J.N.; Hsieh, T.C.; Shen, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT—Biodiversity Assessment Tools, an R Package for the Measurement and Estimation of Alpha and Beta Taxon, Phylogenetic and Functional Diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Heinen, J.T.; Dahal, S. Research priorities for the conservation of Nepal’s lesser terrestrial vertebrates. Asian J. Conserv. Biol. 2023, 12, 90–99. [Google Scholar]
- Chazdon, R.L.; Chao, A.; Colwell, R.K.; Lin, S.; Norden, N.; Letcher, S.G.; Clark, D.B.; Finegan, B.; Arroyo, J.P. A novel statistical method for classifying habitat generalists and specialists. Ecology 2011, 92, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J. The future of tropical forests. Ann. N. Y. Acad. Sci. 2010, 1195, 1–27. [Google Scholar] [CrossRef]
- Bennitt, E.; Bonyongo, M.C.; Harris, S. Habitat selection by African buffalo (Syncerus caffer) in response to landscape-level fluctuations in water availability on two temporal scales. PLoS ONE 2014, 9, e101346. [Google Scholar] [CrossRef]
- Halidu, S.K.; Adebayo, O.A.; Chikezie, J.; Ibrahim, A.O.; Adedeji, O.E. Ecology of Patas Monkey (Erythrocebus patas) in buffer zone ranges, Old Oyo National Park, Nigeria. J. Bioresour. Manag. 2021, 8, 29–37. [Google Scholar] [CrossRef]
- López-Ortiz, R. Erythrocebus Patas; CAB International: Wallingford, UK, 2024. [Google Scholar] [CrossRef]
- Redford, K.H.; Gustavo, A.B.; da Fonseca, G.A. The role of gallery forests in the zoogeography of the cerrado’s non-volant mammalian fauna. Biotropica 1986, 18, 126–135. [Google Scholar] [CrossRef]
- Shilereyo, M.T.; Magige, F.J.; Ogutu, J.O.; Røskaft, E. Small-mammal abundance and species diversity: Land use and seasonal influences in the Serengeti Ecosystem, Tanzania. Front. Conserv. Sci. 2023, 4, 981424. [Google Scholar] [CrossRef]
- Teixeira-Santos, J.; Ribeiro, A.C.D.C.; Wiig, Ø.; Pinto, N.S.; Cantanhede, L.G.; Sena, L.; Mendes-Oliveira, A.C. Environmental factors influencing the abundance of four species of threatened mammals in degraded habitats in the eastern Brazilian Amazon. PLoS ONE 2020, 15, e0229459. [Google Scholar] [CrossRef]
- Palmeirim, A.F.; Santos-Filho, M.; Peres, C.A. Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS ONE 2020, 15, e0230209. [Google Scholar] [CrossRef]
- Dorigo, L.; Boscutti, F.; Sigura, M. Landscape and microhabitat features determine small mammal abundance in forest patches in agricultural landscapes. PeerJ 2021, 9, e12306. [Google Scholar] [CrossRef]
- Pineda-Cendales, S.; Hernández-Rolong, E.; Carvajal-Cogollo, J.E. Medium and large-sized mammals in dry forests of the Colombian Caribbean. Univ. Sci. 2020, 25, 435–461. [Google Scholar] [CrossRef]
- Tsegaye, E.; Mengesha, G. Diversity, relative abundance and distribution of medium and large-sized mammals in Mago National Park, southern Ethiopia. J. Sci. Incl. Dev. 2023, 2023, 68–90. [Google Scholar] [CrossRef]
- De-la-Cruz, I.M.; Castro-Campillo, A.; Zavala-Hurtado, A.; Salame-Méndez, A.; Ramírez-Pulido, J. Spatiotemporal micro-habitat heterogeneity and dispersion patterns of two small mammals in a temperate forest. BioRxiv 2018, 278390, 1–44. [Google Scholar] [CrossRef]






| Season | Chao1 | OR | E | H′ | H′max | D | 1 − D |
|---|---|---|---|---|---|---|---|
| Dry | 17.5 | 10 | 0.31 | 1.03 | 3.32 | 0.57 | 0.43 |
| Rainy | 17.44 | 15 | 0.48 | 1.89 | 3.91 | 0.80 | 0.20 |
| Species Surveyed | Type of Season | ||
|---|---|---|---|
| English Name | Scientific Name | Dry | Rainy |
| Marsh mongoose | Atilax paludinosus | Absent | Present |
| Side-striped jackal | Canis adustus | Present | Present |
| Gray or bush duiker | Cephalophus grimmia | Present | Present |
| Red-flanked duiker | Cephalophus rufilatus | Absent | Present |
| Tantalus monkey | Chlorocebus aethiops tantalus | Present | Present |
| Common civet | Civettictis civetta | Absent | Present |
| Savanna giant pouched rat | Cricetomys gambianus | Absent | Present |
| Patas monkey | Erythrocebus patas | Present | Present |
| Common genet | Genetta genetta | Present | Present |
| African savanna hare | Lepus crawshayi | Present | Present |
| White-bellied pangolin | Phataginus tricuspis | Absent | Present |
| Honey badger | Mellivora capensis | Present | Absent |
| African buffalo | Syncerus caffer | Present | Present |
| Greater cane rat | Thryonomys swinderianus | Present | Present |
| Bushbuck | Tragelaphus scriptus | Present | Present |
| African striped ground squirrel | Xerus erythropus | Absent | Present |
| Richness (Chao1) | Absolute Abundance | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| β | se | z | p | β | se | z | p | ||
| (Intercept) | 1.904 | 0.394 | 4.830 | 0.000 | 5.446 | 0.801 | 6.803 | 0.000 | |
| Season | Dry | −0.812 | 0.375 | −2.167 | 0.030 | −0.197 | 0.739 | −0.267 | 0.789 |
| Rainy | |||||||||
| Distance | DFWP | 0.000 | 0.000 | −0.858 | 0.391 | 0.000 | 0.000 | −1.013 | 0.311 |
| Land cover categories | WL | −0.529 | 0.436 | −1.215 | 0.224 | −0.753 | 0.850 | −0.885 | 0.376 |
| DF | −0.603 | 0.663 | −0.910 | 0.363 | −1.169 | 0.996 | −1.173 | 0.241 | |
| GF | −0.705 | 0.584 | −1.206 | 0.228 | −2.794 | 1.144 | −2.443 | 0.015 | |
| TSS | −0.243 | 0.322 | −0.755 | 0.450 | −0.348 | 0.617 | −0.563 | 0.573 | |
| CFM | |||||||||
| AIC = 191.96, VIF = 2.57 to 3.12 | AIC = 486.29, VIF = 2.78 to 3.46 | ||||||||
| Rainy Season | Dry Season | All Seasons Combined | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Small | Medium | Large | Small | Medium | Large | Small | Medium | Large | |
| Moran index | −0.09 | −0.01 | −0.02 | −0.03 | −0.07 | −0.08 | −0.02 | −0.06 | −0.00 |
| Probability (Monte Carlo simulation) | 0.7 | 0.33 | 0.37 | 0.32 | 0.56 | 0.59 | 0.33 | 0.69 | 0.30 |
| Number of simulations | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ayegnon, D.T.D.; Nobimè, G.; Azihou, F.; Houinato, M.; Djagoun, C.A.M.S. Seasonal Variation in the Diversity, Abundance, and Spatial Distribution of Terrestrial Mammals in the Pénéssoulou Classified Forest. Wild 2026, 3, 2. https://doi.org/10.3390/wild3010002
Ayegnon DTD, Nobimè G, Azihou F, Houinato M, Djagoun CAMS. Seasonal Variation in the Diversity, Abundance, and Spatial Distribution of Terrestrial Mammals in the Pénéssoulou Classified Forest. Wild. 2026; 3(1):2. https://doi.org/10.3390/wild3010002
Chicago/Turabian StyleAyegnon, Dakpo T. D., Georges Nobimè, Fortuné Azihou, Marcel Houinato, and Chabi A. M. S. Djagoun. 2026. "Seasonal Variation in the Diversity, Abundance, and Spatial Distribution of Terrestrial Mammals in the Pénéssoulou Classified Forest" Wild 3, no. 1: 2. https://doi.org/10.3390/wild3010002
APA StyleAyegnon, D. T. D., Nobimè, G., Azihou, F., Houinato, M., & Djagoun, C. A. M. S. (2026). Seasonal Variation in the Diversity, Abundance, and Spatial Distribution of Terrestrial Mammals in the Pénéssoulou Classified Forest. Wild, 3(1), 2. https://doi.org/10.3390/wild3010002
