More Powerful Couples: Urban Residence Choice for Advanced Degree Holders Across Demographic Characteristics
Abstract
1. Introduction
2. Relevant Studies on Migration Patterns and Co-Location Effects
3. Data Sources and Construction
4. Methods Used to Analyze Urban Residence Patterns
5. Fixed-Effects Results from Logit and Weighted Least Squares Models
5.1. Results for powerStatus Designations
5.2. Results for powerStatus Designations, Stratified by Sexual Orientation (copType)
5.3. Results for powerStatus Designations, Stratified by Couple Racial Status (raceStatus)
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
bothLF | Constructed indicator of both partners in labor force |
BUS | Business occupational tag in PUMS data |
copType | Constructed indicator of couple sexual orientation |
FIPS | Federal Information Processing Standards |
FF | Same-sex, female–female partners |
FM | Heterosexual, female–male partners |
GED | General Educational Development |
jobTag | Constructed variable derived for OCCP tags in PUMS data |
laborStatus | Constructed couple labor force status |
MAR | Marital status variable from PUMS data |
MCDC | Missouri Census Data Center |
MED | Medical occupational tag from PUMS data |
MM | Same-sex, male–male partners |
MSA | Metropolitan Statistical Area |
noLF | Constructed variable indicator of neither partner in labor force |
OCCP | Occupational codes in PUMS data |
oneLF | One partner in labor force |
partPower | One partner with bachelor’s degree |
partPowerLow | One partner with some college |
partPowerMore | One partner with masters degree |
partPowerMost | One partner with doctorate degree |
power | Both partners with bachelor’s degrees |
powerLeast | Both partners with high school degrees |
powerLow | Both partners with some college education |
powerMore | Both partners with masters degrees |
powerMost | Both partners with doctoral or professional degrees |
powerStatus | Constructed couple educational attainment variable |
PUMA | Public Use Microdata Area |
PUMS | Public Use Microdata Sets |
RAC1P | Racial Category in PUMS data |
raceStatus | Constructed couple racial status |
SCHL | Educational attainment variable in PUMS data |
SERIALNO | Household identifier in PUMS data |
ST | FIPS State Code used in PUMS data |
urb | Constructed binary definition of 70% urban-ness |
urbPro | Constructed definition of urban-ness that allows for partially urban and rural counties |
WLS | Weighted least squares |
Appendix A. Complete Urban Residence Rate Summary Statistics
Category | Variable | 2007 | 2012 | 2017 | 2022 | ||||
---|---|---|---|---|---|---|---|---|---|
n |
Mean (sd) | n |
Mean (sd) | n |
Mean (sd) | n | Mean (sd) | ||
powerLeast | urb | 1,032,208 | 48.96 (49.99) | 295,536 | 51.96 (49.96) | 1,351,934 | 52.78 (49.92) | 157,426 | 49.55 (50.00) |
urbPro | 1,032,208 | 68.19 (27.31) | 295,536 | 70.01 (27.61) | 1,351,934 | 70.49 (27.53) | 157,426 | 68.80 (27.62) | |
partPowerLow | urb | 679,052 | 52.10 (49.96) | 223,112 | 53.52 (49.88) | 1,077,178 | 53.50 (49.88) | 132,462 | 48.46 (49.98) |
urbPro | 679,052 | 70.07 (26.33) | 223,112 | 70.90 (26.84) | 1,077,178 | 70.81 (26.85) | 132,462 | 68.21 (27.21) | |
partPower | urb | 204,982 | 60.64 (48.85) | 66,604 | 62.33 (48.46) | 354,552 | 63.47 (48.15) | 51,330 | 57.11 (49.49) |
urbPro | 204,982 | 74.90 (25.43) | 66,604 | 75.93 (25.75) | 354,552 | 76.58 (25.51) | 51,330 | 73.41 (26.55) | |
partPowerMore | urb | 60,252 | 60.31 (48.93) | 20,994 | 61.88 (48.57) | 119,210 | 62.79 (48.34) | 18,414 | 57.70 (49.41) |
urbPro | 60,252 | 74.62 (25.82) | 20,994 | 75.34 (26.32) | 119,210 | 76.08 (25.97) | 18,414 | 73.59 (26.71) | |
partPowerMost | urb | 23,040 | 63.00 (48.28) | 6248 | 69.78 (45.92) | 34,908 | 69.81 (45.91) | 5384 | 63.52 (48.14) |
urbPro | 23,040 | 76.16 (25.64) | 6248 | 80.03 (24.53) | 34,908 | 80.08 (24.67) | 5384 | 76.68 (26.21) | |
powerLow | urb | 1,261,622 | 64.67 (47.80) | 441,702 | 66.65 (47.15) | 2,329,066 | 67.11 (46.98) | 312,972 | 61.36 (48.69) |
urbPro | 1,261,622 | 77.19 (24.37) | 441,702 | 78.37 (24.75) | 2,329,066 | 78.61 (24.60) | 312,972 | 75.78 (25.88) | |
power | urb | 285,918 | 72.33 (44.73) | 98,076 | 75.24 (43.16) | 529,668 | 75.79 (42.84) | 75,542 | 69.33 (46.11) |
urbPro | 285,918 | 81.46 (22.51) | 98,076 | 83.32 (22.42) | 529,668 | 83.57 (22.17) | 75,542 | 80.47 (24.19) | |
powerMore | urb | 145,462 | 75.94 (42.74) | 55,644 | 79.10 (40.66) | 317,138 | 79.52 (40.36) | 46,222 | 73.89 (43.93) |
urbPro | 145,462 | 83.71 (22.06) | 55,644 | 85.60 (21.42) | 317,138 | 85.82 (21.28) | 46,222 | 83.11 (23.33) | |
powerMost | urb | 34,418 | 82.18 (38.27) | 12,926 | 84.22 (36.46) | 75,952 | 84.11 (36.56) | 10,938 | 79.30 (40.52) |
urbPro | 34,418 | 87.34 (19.43) | 12,926 | 88.45 (19.45) | 75,952 | 88.56 (19.26) | 10,938 | 86.25 (21.40) |
Appendix B. Plot of (Controlled) powerStatus Effects on Urban Residence Probability
Appendix C. Plot of Sample Fixed Effects
References
- Artz, G. Rural area brain drain: Is it a reality? Choices 2003, 18, 11–15. [Google Scholar]
- Waldorf, B.S. Brain Drain in Rural America. In Proceedings of the Agricultural and Applied Economics Association (AAEA) Conferences, Portland, OR, USA, 29 July–1 August 2007. [Google Scholar]
- Carr, P.J.; Kefalas, M.J. Hollowing Out the Middle: The Rural Brain Drain and What It Means for America; Beacon Press: Boston, MA, USA, 2009. [Google Scholar]
- Carr, P.J.; Kefalas, M.J. The rural brain drain. Chron. High. Educ. 2009, 9, 1–13. [Google Scholar]
- Sherman, J.; Sage, R. Sending Off All Your Good Treasures: Rural Schools, Brain-Drain, and Community Survival in the Wake of Economic Collapse. J. Res. Rural Educ. 2011, 26, 1–14. [Google Scholar]
- Estes, H.K.; Estes, S.; Johnson, D.M.; Edgar, L.D.; Shoulders, C.W. The rural brain drain and choice of major: Evidence from one land grant university. NACTA J. 2016, 60, 9–13. [Google Scholar]
- Lee, M. Losing Our Mind: Brain Drain Across the United States; SCP Report No. 2–19; United States Congress Joint Economic Committee: Washington DC, USA, 2019.
- Vazzana, C.M.; Rudi-Polloshka, J. Appalachia has got talent, but why does it flow away? A study on the determinants of brain drain from rural USA. Econ. Dev. Q. 2019, 33, 220–233. [Google Scholar] [CrossRef]
- Costa, D.L.; Kahn, M.E. Power couples: Changes in the locational choice of the college educated, 1940–1990. Q. J. Econ. 2000, 115, 1287–1315. [Google Scholar] [CrossRef]
- Berliant, M.; Fujita, M. The dynamics of knowledge diversity and economic growth. South. Econ. J. 2011, 77, 856–884. [Google Scholar] [CrossRef]
- Ager, P.; Brückner, M. Cultural diversity and economic growth: Evidence from the US during the age of mass migration. Eur. Econ. Rev. 2013, 64, 76–97. [Google Scholar] [CrossRef]
- Gören, E. How ethnic diversity affects economic growth. World Dev. 2014, 59, 275–297. [Google Scholar] [CrossRef]
- Bove, V.; Elia, L. Migration, diversity, and economic growth. World Dev. 2017, 89, 227–239. [Google Scholar] [CrossRef]
- Greenwood, M.J. Research on Internal Migration in the United States: A Survey. J. Econ. Lit. 1975, 13, 397–433. [Google Scholar]
- Sato, Y.; Yamamoto, K. Population concentration, urbanization, and demographic transition. J. Urban Econ. 2005, 58, 45–61. [Google Scholar] [CrossRef]
- Clark, T.; Lloyd, R.; Wong, K.; Jain, P. Amenities Drive Urban Growth. J. Urban Aff. 2002, 24, 493–515. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Saiz, A.; Burtless, G.; Strange, W.C. The rise of the skilled city. In Brookings-Wharton Papers on Urban Affairs; Brookings Institution Press: Washington, DC, USA, 2004; pp. 47–105. [Google Scholar]
- Moretti, E. The New Geography of Jobs; Houghton Mifflin Harcourt: Boston, MA, USA, 2012. [Google Scholar]
- Hofmann, A.; Wan, G. Determinants of Urbanization; Asian Development Bank (ADB): Manila, Philippines, 2013. [Google Scholar]
- Rauch, J.E. Productivity gains from geographic concentration of human capital: Evidence from the cities. J. Urban Econ. 1993, 34, 380–400. [Google Scholar] [CrossRef]
- Backman, M. Returns to Education across the urban-rural hierarchy. Rev. Reg. Stud. 2014, 44, 33–59. [Google Scholar] [CrossRef]
- Basker, E. Education, Job Search and Migration; University of Missouri-Columbia Working Paper; University of Missouri-Columbia: Columbia, MO, USA, 2002; pp. 02–16. [Google Scholar]
- Bernard, A.; Bell, M. Educational selectivity of internal migrants: A global assessment. Demogr. Res. 2018, 39, 835–854. [Google Scholar] [CrossRef]
- Chen, Y.; Rosenthal, S.S. Local amenities and life-cycle migration: Do people move for jobs or fun? J. Urban Econ. 2008, 64, 519–537. [Google Scholar] [CrossRef]
- Jacobs, J. The Economy of Cities; Random House: New York, NY, USA, 1969. [Google Scholar]
- Jayachandran, S.; Nassal, L.; Notowidigdo, M.J.; Paul, M.; Sarsons, H.; Sundberg, E. Moving to Opportunity, Together; Working Paper 32970; National Bureau of Economic Research: Boston, MA, USA, 2024. [Google Scholar] [CrossRef]
- Simon, C.J. Migration and career attainment of power couples: The roles of city size and human capital composition. J. Econ. Geogr. 2019, 19, 505–534. [Google Scholar] [CrossRef]
- Lindemann, D.J. Commuter spouses and the changing American family. Contexts 2017, 16, 26–31. [Google Scholar] [CrossRef]
- Becker, P.E.; Moen, P. Scaling back: Dual-earner couples’ work-family strategies. J. Marriage Fam. 1999, 61, 995–1007. [Google Scholar] [CrossRef]
- Wolf-Wendel, L.E. Dual-Career Couples: Keeping Them Together. J. High. Educ. 2000, 71, 291–321. [Google Scholar] [CrossRef]
- Rabe, B. Dual-earner migration. Earnings gains, employment and self-selection. J. Popul. Econ. 2011, 24, 477–497. [Google Scholar] [CrossRef]
- Boyle, P.; Feng, Z.; Gayle, V. A New Look at Family Migration and Women’s Employment Status. J. Marriage Fam. 2009, 71, 417–431. [Google Scholar] [CrossRef]
- Rusconi, A.; Solga, H. A Systematic Reflection upon Dual Career Couples; Social Science Research Center Berlin: Berlin, Germany, 2008. [Google Scholar]
- Lee, S.; Roseman, C.C. Migration determinants and employment consequences of white and black families, 1985–1990. Econ. Geogr. 1999, 75, 109–133. [Google Scholar]
- Boyle, P.; Cooke, T.J.; Halfacree, K.; Smith, D. A Cross-National Comparison of the Impact of Family Migration on Women’s Employment Status. Demography 2001, 38, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Venator, J. Concentrating on His Career or Hers?: Descriptive Evidence on Occupational Co-Agglomeration in Dual-Earner Households. Ph.D. Thesis, Boston College, Chestnut Hill, MA, USA, 2024. [Google Scholar]
- Waddell, P.A. Household Choice and Urban Structure: A Re-Assessment of the Behavioural Foundations of Urban Models of Housing, Labor and Transportation Markets; Routledge: London, UK, 1997. [Google Scholar]
- Woldoff, R.A.; DeCola, T.; Litchfield, R.C. The aspirational creative class: Urban residential preferences of college students in creative majors. City Cult. Soc. 2011, 2, 75–83. [Google Scholar] [CrossRef]
- de Haas, H. A theory of migration: The aspirations–capabilities framework. Comp. Migr. Stud. 2021, 9, 8. [Google Scholar] [CrossRef]
- Black, D.; Gates, G.; Sanders, S.; Taylor, L. Demographics of the gay and lesbian population in the United States: Evidence from available systematic data sources. Queer Econ. 2013, 37, 61–92. [Google Scholar] [CrossRef]
- Miller, J.C.; Collins, S. What Is the Economic Impact of “Brain Drain” in Mississippi? University Research Center Mississippi Institutions of Higher Learning: Jackson, MS, USA, 2022. [Google Scholar]
- Compton, J.; Pollak, R.A. Why are power couples increasingly concentrated in large metropolitan areas? J. Labor Econ. 2007, 25, 475–512. [Google Scholar] [CrossRef]
- Missouri Census Data Center. Geocorr Applications; Missouri Census Data Center: Jefferson City, MO, USA, 2025. [Google Scholar]
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research, R package version 2.3.9; Northwestern University: Evanston, IL, USA, 2023. [Google Scholar]
- U.S. Census Bureau. Commuting Characteristics by Sex; U.S. Census Bureau: Suitland, MD, USA, 2021. Available online: https://data.census.gov/table/ACSST5Y2020.S0801?q=commute&moe=false (accessed on 26 February 2025).
- Bergé, L. Efficient Estimation of Maximum Likelihood Models with Multiple Fixed-Effects: The R Package FENmlm; CREA Discussion Papers; Department of Economics at the University of Luxembourg: Luxembourg, 2018. [Google Scholar]
- Glaeser, E.L.; Gottlieb, J.D. The wealth of cities: Agglomeration economies and spatial equilibrium in the United States. J. Econ. Lit. 2009, 47, 983–1028. [Google Scholar] [CrossRef]
- Jeworrek, S.; Brachert, M. Are rural firms left behind? Firm location and perceived job attractiveness of high-skilled workers. Camb. J. Reg. Econ. Soc. 2024, 17, 75–86. [Google Scholar] [CrossRef]
- Parker, K.; Menasce Horowitz, J.; Brown, A.; Fry, R.; Cohn, D.; Igielnik, R. Demographic and Economic Trends in Urban, Suburban and Rural Communities; Pew Research Center: Washington, DC, USA, 2018. [Google Scholar]
Variable | Description | Use |
---|---|---|
MAR | Marital Status | Used to identify individuals as married or unmarried |
PUMA | FIPS PUMA Code | Used to identify PUMA (location) of individual |
RAC1P | Racial Category | Used to identify self-reported race of individual and partner |
SCHL | Educational Attainment | Used to identify highest degree earned for person and their partner |
SERIALNO | Household Identifier | Used to pair potential partners living in the same home |
SEX | Sex of Person | Used to identify couple type (e.g., heterosexual, same sex) |
ST | FIPS State Code | Used to identify state (location) of individual |
Characteristic | Single Individuals | Couples | ||
---|---|---|---|---|
Variable(s) Used | Possible Values | Variable(s) Used | Possible Values | |
Power Designation (powerStatus) | SCHL | Varies by PUMS year | SCHL MAR | powerLeast partPowerLow partPower partPowerMore partPowerMost powerLow power powerMore powerMost |
Couple Type (copType) | MAR | single | MAR SEX | female–female (FF) female–male (FM) male–male (MM) |
Race (raceStatus) | RAC1P | White Black/African American American Indian Alaska Native American Indian/Alaska Native Asian Native Hawaiian/Pacific Islander Some other race Two or more major races | RAC1P MAR | asian black mixed other white |
Labor Force Status (laborStatus) | ESR WORKSTAT OCCP | Codes indicating labor force status Code for individual’s occupation (jobTag) | MAR FES OCCP | bothLF oneLF noLF |
Category | Variable | 2007 | 2012 | 2017 | 2022 | ||||
---|---|---|---|---|---|---|---|---|---|
n |
Mean (sd) | n |
Mean (sd) | n |
Mean (sd) | n |
Mean (sd) | ||
powerLeast | urb | 1,032,208 | 48.96 (49.99) | 295,536 | 51.96 (49.96) | 1,351,934 | 52.78 (49.92) | 157,426 | 49.55 (50.00) |
urbPro | 1,032,208 | 68.19 (27.31) | 295,536 | 70.01 (27.61) | 1,351,934 | 70.49 (27.53) | 157,426 | 68.80 (27.62) | |
partPower | urb | 204,982 | 60.64 (48.85) | 66,604 | 62.33 (48.46) | 354,552 | 63.47 (48.15) | 51,330 | 57.11 (49.49) |
urbPro | 204,982 | 74.90 (25.43) | 66,604 | 75.93 (25.75) | 354,552 | 76.58 (25.51) | 51,330 | 73.41 (26.55) | |
power | urb | 285,918 | 72.33 (44.73) | 98,076 | 75.24 (43.16) | 529,668 | 75.79 (42.84) | 75,542 | 69.33 (46.11) |
urbPro | 285,918 | 81.46 (22.51) | 98,076 | 83.32 (22.42) | 529,668 | 83.57 (22.17) | 75,542 | 80.47 (24.19) | |
powerMost | urb | 34,418 | 82.18 (38.27) | 12,926 | 84.22 (36.46) | 75,952 | 84.11 (36.56) | 10,938 | 79.30 (40.52) |
urbPro | 34,418 | 87.34 (19.43) | 12,926 | 88.45 (19.45) | 75,952 | 88.56 (19.26) | 10,938 | 86.25 (21.40) |
Category | Variable | 2007 | 2012 | 2017 | 2022 | ||||
---|---|---|---|---|---|---|---|---|---|
n |
Mean
(sd) | n |
Mean
(sd) | n |
Mean
(sd) | n |
Mean
(sd) | ||
Heterosexual (FM) | urb | 3,720,536 | 58.89 (49.20) | 1,219,180 | 61.81 (48.59) | 6,133,590 | 62.82 (48.33) | 800,502 | 58.14 (49.33) |
urbPro | 3,720,536 | 73.88 (25.90) | 1,219,180 | 75.62 (26.08) | 6,133,590 | 76.18 (25.86) | 800,502 | 73.88 (26.61) | |
Same-sex (FF) | urb | 2078 | 75.26 (43.16) | 736 | 78.26 (41.28) | 28,362 | 71.55 (45.12) | 5158 | 68.24 (46.56) |
urbPro | 2078 | 83.26 (23.65) | 736 | 85.85 (21.49) | 28,362 | 81.47 (24.29) | 5158 | 79.94 (24.98) | |
Same-sex (MM) | urb | 4340 | 76.54 (42.38) | 926 | 80.56 (39.59) | 27,654 | 77.12 (42.01) | 4940 | 76.23 (42.57) |
urbPro | 4340 | 84.49 (23.39) | 926 | 86.59 (22.11) | 27,654 | 84.73 (22.55) | 4940 | 84.69 (22.84) |
Category | Variable | 2007 | 2012 | 2017 | 2022 | ||||
---|---|---|---|---|---|---|---|---|---|
n |
Mean (sd) | n |
Mean (sd) | n |
Mean (sd) | n |
Mean (sd) | ||
asian | urb | 125,332 | 93.37 (24.87) | 48,506 | 95.28 (21.20) | 264,544 | 95.53 (20.67) | 37,940 | 93.78 (24.15) |
urbPro | 125,332 | 94.32 (12.55) | 48,506 | 95.71 (11.46) | 264,544 | 95.80 (10.96) | 37,940 | 94.86 (12.57) | |
black | urb | 189,864 | 73.52 (44.12) | 65,810 | 77.41 (41.82) | 318,678 | 77.75 (41.59) | 34,068 | 71.50 (45.14) |
urbPro | 189,864 | 82.46 (24.45) | 65,810 | 84.35 (23.72) | 318,678 | 84.52 (23.42) | 34,068 | 81.48 (24.87) | |
mixed | urb | 201,134 | 71.38 (45.20) | 70,124 | 74.46 (43.61) | 388,494 | 75.46 (43.03) | 97,254 | 69.85 (45.89) |
urbPro | 201,134 | 81.08 (23.27) | 70,124 | 82.89 (23.22) | 388,494 | 83.45 (22.95) | 97,254 | 80.85 (24.08) | |
white | urb | 3,081,674 | 54.87 (49.76) | 1,001,136 | 57.76 (49.39) | 5,035,466 | 58.71 (49.23) | 568,834 | 50.42 (50.00) |
urbPro | 3,081,674 | 71.54 (26.03) | 1,001,136 | 73.24 (26.31) | 5,035,466 | 73.77 (26.14) | 568,834 | 69.34 (26.87) |
Dependent Variables: | urbPro | urb | urbPro | urb | ||
---|---|---|---|---|---|---|
Model: | (1) | (2) | (3) | (4) | (5) | (6) |
WLS | Logit | WLS | Logit | Logit | Logit | |
Variables | ||||||
powerLeast | −0.025 *** | −0.157 *** | −0.041 *** | −0.368 *** | −0.113 *** | −0.273 *** |
(0.001) | (0.011) | (0.002) | (0.025) | (0.009) | (0.024) | |
partPower | −0.011 *** | −0.087 *** | −0.017 *** | −0.190 *** | −0.071 *** | −0.167 *** |
(0.001) | (0.006) | (0.002) | (0.010) | (0.023) | (0.052) | |
partPowerLow | −0.023 *** | −0.155 *** | −0.038 *** | −0.348 *** | −0.136 *** | −0.325 *** |
(0.001) | (0.002) | (0.001) | (0.005) | (0.017) | (0.041) | |
partPowerMore | −0.015 *** | −0.123 *** | −0.022 *** | −0.258 *** | −0.109 *** | −0.240 *** |
(0.001) | (0.008) | (0.002) | (0.014) | (0.025) | (0.057) | |
partPowerMost | −0.009 *** | −0.082 *** | −0.012 *** | −0.151 *** | −0.088 *** | −0.178 *** |
(0.002) | (0.012) | (0.002) | (0.022) | (0.028) | (0.063) | |
power | 0.003 | 0.018 | 0.009 ** | 0.067 * | 0.025 | 0.074 |
(0.003) | (0.022) | (0.004) | (0.039) | (0.038) | (0.078) | |
powerLow | −0.007 ** | −0.071 *** | −0.010 ** | −0.140 *** | −0.050 | −0.104 |
(0.002) | (0.015) | (0.003) | (0.027) | (0.030) | (0.066) | |
powerMore | 0.005 | 0.043 | 0.013 ** | 0.113 ** | 0.072 | 0.167 * |
(0.003) | (0.029) | (0.005) | (0.051) | (0.047) | (0.093) | |
powerMost | 0.010 ** | 0.116 *** | 0.022 *** | 0.272 *** | 0.144 *** | 0.342 *** |
(0.004) | (0.035) | (0.006) | (0.063) | (0.052) | (0.102) | |
Fixed Effects and Controls | ||||||
State | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA Population Control | Yes | Yes | Yes | Yes | Yes | Yes |
Occupational Code | Yes | Yes | ||||
Fit Statistics | ||||||
Observations | 23,280,874 | 20,789,576 | 23,280,874 | 14,047,749 | 12,204,388 | 8,167,911 |
Squared Correlation | 0.67630 | 0.66293 | 0.60322 | 0.42453 | 0.65613 | 0.42383 |
Pseudo R2 | 0.36805 | 0.78461 | 0.98535 | 0.34284 | 0.78486 | 0.34120 |
Dependent Variable: | urbPro | |||||
---|---|---|---|---|---|---|
Model: | (1) | (2) | (3) | (4) | (5) | (6) |
FF | FM | MM | FF | FM | MM | |
Variables | ||||||
powerLeast | −0.161 *** | −0.004 *** | 0.141 *** | −0.165 *** | 0.010 *** | 0.195 *** |
(0.013) | (0.000) | (0.000) | (0.011) | (0.000) | (0.000) | |
partPowerLow | −0.158 *** | 0.002 *** | 0.028 *** | −0.178 *** | −0.019 *** | 0.002 *** |
(0.004) | (0.000) | (0.000) | (0.003) | (0.000) | (0.000) | |
partPower | −0.091 *** | 0.004 *** | 0.113 *** | −0.122 *** | −0.053 *** | 0.027 *** |
(0.004) | (0.000) | (0.000) | (0.004) | (0.000) | (0.000) | |
partPowerMore | −0.127 *** | −0.131 *** | 0.113 *** | −0.160 *** | −0.140 *** | 0.064 *** |
(0.006) | (0.000) | (0.000) | (0.007) | (0.000) | (0.000) | |
partPowerMost | −0.085 *** | 0.305 *** | −0.293 *** | −0.139 *** | 0.306 *** | −0.322 *** |
(0.010) | (0.000) | (0.000) | (0.010) | (0.000) | (0.000) | |
power | 0.015 | −0.022 *** | −0.005 *** | −0.026 | −0.074 *** | −0.067 *** |
(0.019) | (0.000) | (0.000) | (0.020) | (0.000) | (0.000) | |
powerLow | −0.074 *** | −0.067 *** | 0.016 *** | −0.102 *** | −0.081 *** | −0.014 *** |
(0.012) | (0.000) | (0.000) | (0.012) | (0.000) | (0.000) | |
powerMore | 0.040 | −0.048 *** | −0.055 *** | 0.021 | −0.077 *** | −0.131 *** |
(0.026) | (0.000) | (0.000) | (0.029) | (0.000) | (0.000) | |
powerMost | 0.114 *** | −0.067 *** | −0.186 *** | 0.094 *** | −0.057 *** | −0.215 *** |
(0.033) | (0.000) | (0.000) | (0.034) | (0.000) | (0.001) | |
Fixed Effects and Controls | ||||||
State | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA Population Control | Yes | Yes | Yes | Yes | Yes | Yes |
Occupational Code | Yes | Yes | Yes | |||
Fit Statistics | ||||||
Observations | 20,728,285 | 9,908,982 | 9,908,851 | 12,164,483 | 6,849,260 | 6,849,167 |
Squared Correlation | 0.66277 | 0.66111 | 0.66116 | 0.65599 | 0.65371 | 0.65377 |
Pseudo R2 | 0.78462 | 0.78389 | 0.78390 | 0.78487 | 0.78378 | 0.78380 |
Dependent Variable: | urbPro | |||||||
---|---|---|---|---|---|---|---|---|
Model: | asian | black | mixed | white | asian | black | mixed | white |
Variables | ||||||||
powerLeast | 0.430 *** | 0.095 *** | −0.133 *** | −0.199 *** | 0.393 *** | 0.109 *** | −0.102 *** | −0.198 *** |
(0.003) | (0.007) | (0.010) | (0.010) | (0.003) | (0.006) | (0.011) | (0.010) | |
partPowerLow | 0.313 *** | 0.174 *** | −0.112 *** | −0.186 *** | 0.299 *** | 0.161 *** | −0.098 *** | −0.211 *** |
(0.001) | (0.006) | (0.009) | (0.007) | (0.001) | (0.006) | (0.012) | (0.005) | |
partPower | 0.365 *** | 0.223 *** | −0.062 *** | −0.110 *** | 0.329 *** | 0.194 *** | −0.091 *** | −0.154 *** |
(0.002) | (0.005) | (0.009) | (0.005) | (0.002) | (0.006) | (0.012) | (0.002) | |
partPowerMore | 0.324 *** | 0.176 *** | −0.087 *** | −0.148 *** | 0.261 *** | 0.168 *** | −0.120 *** | −0.200 *** |
(0.003) | (0.006) | (0.009) | (0.005) | (0.003) | (0.007) | (0.012) | (0.004) | |
partPowerMost | 0.229 *** | 0.178 *** | 0.002 | −0.095 *** | 0.059 *** | 0.167 *** | −0.079 *** | −0.165 *** |
(0.001) | (0.006) | (0.009) | (0.005) | (0.000) | (0.008) | (0.012) | (0.007) | |
powerLow | 0.262 *** | 0.237 *** | −0.049 *** | −0.080 *** | 0.178 *** | 0.195 *** | −0.077 *** | −0.130 *** |
(0.001) | (0.005) | (0.009) | (0.003) | (0.000) | (0.007) | (0.013) | (0.008) | |
power | 0.323 *** | 0.279 *** | 0.038 *** | 0.016 *** | 0.216 *** | 0.212 *** | −0.031 ** | −0.050 *** |
(0.002) | (0.004) | (0.009) | (0.005) | (0.001) | (0.007) | (0.014) | (0.015) | |
powerMore | 0.257 *** | 0.264 *** | 0.071 *** | 0.044 *** | 0.123 *** | 0.188 *** | −0.010 | −0.006 |
(0.001) | (0.004) | (0.009) | (0.007) | (0.002) | (0.008) | (0.014) | (0.024) | |
powerMost | 0.147 *** | 0.240 *** | 0.122 *** | 0.146 *** | 0.039 *** | 0.177 *** | 0.033 ** | 0.086 *** |
(0.000) | (0.003) | (0.009) | (0.010) | (0.001) | (0.005) | (0.015) | (0.030) | |
Fixed Effects and Controls | ||||||||
State | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PUMA Population Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Occupational Code | Yes | Yes | Yes | Yes | ||||
Fit Statistics | ||||||||
Observations | 15,214,227 | 15,369,645 | 15,509,493 | 23,885,857 | 7,316,751 | 7,389,236 | 7,498,483 | 11,525,695 |
Squared Correlation | 0.66111 | 0.65798 | 0.65836 | 0.65848 | 0.65607 | 0.65313 | 0.65344 | 0.65308 |
Pseudo R2 | 0.78541 | 0.78475 | 0.78491 | 0.78561 | 0.78410 | 0.78362 | 0.78361 | 0.78521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blake, C.D.; Kreutzen, C. More Powerful Couples: Urban Residence Choice for Advanced Degree Holders Across Demographic Characteristics. Populations 2025, 1, 18. https://doi.org/10.3390/populations1030018
Blake CD, Kreutzen C. More Powerful Couples: Urban Residence Choice for Advanced Degree Holders Across Demographic Characteristics. Populations. 2025; 1(3):18. https://doi.org/10.3390/populations1030018
Chicago/Turabian StyleBlake, Christopher D., and Caroline Kreutzen. 2025. "More Powerful Couples: Urban Residence Choice for Advanced Degree Holders Across Demographic Characteristics" Populations 1, no. 3: 18. https://doi.org/10.3390/populations1030018
APA StyleBlake, C. D., & Kreutzen, C. (2025). More Powerful Couples: Urban Residence Choice for Advanced Degree Holders Across Demographic Characteristics. Populations, 1(3), 18. https://doi.org/10.3390/populations1030018