A Broken Heart and Windy Nights: Single Center Results of Inpatient Sleep Studies and Interventions in Hospitalized Heart Failure Patients
Abstract
1. Introduction
2. Methods
2.1. Subject Identification
2.2. Inpatient Testing
2.3. Intervention
2.4. Outpatient Follow-Up
2.5. Data Collection
2.6. Outcomes
2.7. Exclusion Criteria
2.8. Heart Failure Classification and Guideline-Directed Medical Therapy
2.9. Sleep Apnea Classification and PAP Adherence
2.10. Co-Morbidities
2.11. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Demographics and Co-Morbidities
3.3. Heart Failure and Cardiac Parameters
3.4. Sleep Apnea Characteristics
3.5. Positive Airway Pressure Use and Adherence Data
3.6. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep disordered breathing and cardiovascular disease: JACC State-of-the-Art review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Parker, J.D.; Newton, G.E.; Floras, J.S.; Mak, S.; Chiu, K.-L.; Ruttanaumpawan, P.; Tomlinson, G.; Bradley, T.D. Influence of obstructive sleep apnea on mortality in patients with heart failure. J. Am. Coll. Cardiol. 2007, 49, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, F.; Wei, Q.; Xu, X.; Xie, L.; Ding, N.; Tong, J. Sleep-disordered breathing in heart failure patients with different etiologies. Clin. Cardiol. 2022, 45, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.; Olson, L.J.; et al. Sleep apnea and cardiovascular disease. J. Am. Coll. Cardiol. 2008, 52, 686–717. [Google Scholar] [CrossRef]
- Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; D’ortho, M.-P.; Erdmann, E.; Levy, P.; Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N. Engl. J. Med. 2015, 373, 1095–1105. [Google Scholar] [CrossRef]
- Bradley, T.D.; Logan, A.G.; Kimoff, R.J.; Sériès, F.; Morrison, D.; Ferguson, K.; Belenkie, I.; Pfeifer, M.; Fleetham, J.; Hanly, P.; et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 2005, 353, 2025–2033. [Google Scholar] [CrossRef]
- Perger, E.; Lyons, O.D.; Inami, T.; Smith, S.; Floras, J.S.; Logan, A.G.; Bradley, T.D.; for the ADVENT-HF Investigators. Predictors of 1-year compliance with adaptive servoventilation in patients with heart failure and sleep disordered breathing: Preliminary data from the ADVENT-HF trial. Eur. Respir. J. 2019, 53, 1801626. [Google Scholar] [CrossRef]
- Khayat, R.N.; Javaheri, S.; Porter, K.; Sow, A.; Holt, R.; Randerath, W.; Abraham, W.T.; Jarjoura, D. In-hospital management of sleep apnea during heart failure hospitalization: A randomized controlled trial. J. Card. Fail. 2020, 26, 705–712. [Google Scholar] [CrossRef]
- Valika, A.; Costanzo, M.R. Sleep-disordered breathing during congestive heart failure: To intervene or not to intervene? Card. Fail. Rev. 2017, 3, 134–139. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar]
- Sateia, M.J. International classification of sleep disorders-third edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Hevener, B.; Hevener, W. Continuous positive airway pressure therapy for obstructive sleep apnea: Maximizing adherence including using novel information technology-based systems. Sleep Med. Clin. 2016, 11, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Olson, E.J.; Shen, W.K.; Wright, R.S.; Ballman, K.V.; Hodge, D.O.; Herges, R.M.; Howard, D.E.; Somers, V.K. Obstructive sleep apnea and the risk of sudden cardiac death: A longitudinal study of 10,701 Adults. J. Am. Coll. Cardiol. 2013, 62, 610–616. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, R.D.; Antic, N.A.; Heeley, E.; Luo, Y.; Ou, Q.; Zhang, X.; Mediano, O.; Chen, R.; Drager, L.F.; Liu, Z.; et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016, 375, 919–931. [Google Scholar] [CrossRef]
- Barbé, F.; Durán-Cantolla, J.; Sánchez-de-la-Torre, M.; Martinez-Alonso, M.; Carmona, C.; Barceló, A.; Chiner, E.; Masa, J.F.; González, M.; Marín, J.M.; et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: A randomized controlled trial. JAMA 2012, 307, 2161–2168. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with non-sleepy obstructive sleep apnea: The RICCADSA randomized controlled trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef]
- Parra, O.; Sánchez-Armengol, Á.; Capote, F.; Bonnin, M.; Arboix, A.; Campos-Rodríguez, F.; Pérez-Ronchel, J.; Durán-Cantolla, J.; Martínez-Null, C.; de la Peña, M.; et al. Efficacy of continuous positive airway pressure treatment on 5-year survival in patients with ischaemic stroke and obstructive sleep apnea: A randomized controlled trial. J. Sleep Res. 2015, 24, 47–53. [Google Scholar] [CrossRef]
- Antic, N.A.; Catcheside, P.; Buchan, C.; Hensley, M.; Naughton, M.T.; Rowland, S.; Williamson, B.; Windler, S.; McEvoy, R.D. The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep 2011, 34, 111–119. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Z.; McEvoy, R.D.; Anderson, C.S.; Rodgers, A.; Perkovic, V.; Neal, B. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: A systematic review and meta-analysis. JAMA 2017, 318, 156–166. [Google Scholar] [CrossRef]
- Weaver, T.E.; Sawyer, A.M. Adherence to continuous positive airway pressure treatment for obstructive sleep apnoea: Implications for future interventions. Indian J. Med. Res. 2010, 131, 245–258. [Google Scholar]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Narui, K.; Dohi, T.; Yanagisawa, N.; Ishiwata, S.; Ohno, M.; Yamaguchi, T.; Momomura, S.-I. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest 2008, 133, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of Sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Campos-Rodriguez, F.; Javaheri, S.; Gozal, D. Pro: Continuous positive airway pressure and cardiovascular prevention. Eur. Resp. J. 2018, 51, 1702400. [Google Scholar] [CrossRef]
- Kato, T.; Suda, S.; Kasai, T. Positive airway pressure therapy for heart failure. World J. Cardiol. 2014, 6, 1175–1191. [Google Scholar] [CrossRef]
All (N = 109) | PAP (N = 48) | No-PAP (N = 61) | p-Value | Adherent (N = 28) | Non-Adherent (N = 81) | p-Value | |
---|---|---|---|---|---|---|---|
Age (years) | 56.1 ± 14.1 | 56.6 ± 14.1 | 55.6 ± 14.9 | 0.98 | 58.6 ± 14.0 | 55.2 ± 15.7 | <0.01 |
Body mass index (kg/m2) | 34.4 ± 8.5 | 35.1 ± 8.5 | 33.8 ± 11.3 | 0.12 | 34.2 ± 8.1 | 34.5 ± 10.8 | 0.77 |
Male | 75 (69) | 34 (71) | 41 (67) | 0.84 | 18 (64) | 50 (70) | 0.64 |
White | 62 (57) | 33 (69) | 29 (48) | 0.03 | 22 (79) | 40 (49) | <0.01 |
Black | 43 (39) | 13 (27) | 30 (49) | 0.03 | 4 (14) | 39 (48) | <0.01 |
Other | 4 (4) | 2 (4) | 2 (3) | 1.00 | 2 (7) | 2 (2) | 0.57 |
Admission length of stay (days) | 11.1 ± 11.5 | 10.1 ± 11.7 | 11.8 ± 11.5 | 0.18 | 11.3 ± 13.5 | 11.0 ± 10.8 | 0.33 |
Comorbidities | |||||||
Arrythmia | 57 (52) | 24 (50) | 33 (54) | 0.70 | 15 (54) | 42 (52) | 1.00 |
Coronary artery disease | 40 (37) | 18 (38) | 22 (36) | 1.00 | 13 (46) | 27 (33) | 0.26 |
Chronic kidney disease, ≥stage 3 | 36 (33) | 15 (31) | 21 (34) | 0.84 | 10 (36) | 26 (32) | 0.82 |
Diabetes | 44 (40) | 20 (42) | 28 (46) | 0.70 | 14 (50) | 34 (42) | 0.51 |
Hyperlipidemia | 55 (50) | 21 (44) | 34 (56) | 0.25 | 13 (46) | 42 (52) | 0.67 |
Hypertension | 88 (81) | 39 (81) | 49 (80) | 1.0 | 20 (71) | 68 (84) | 0.17 |
Implantable cardioverter defibrillator | 55 (50) | 20 (42) | 35 (57) | 0.12 | 9 (32) | 46 (57) | 0.03 |
Smoker | 15 (14) | 5 (10) | 10 (16) | 0.42 | 2 (7) | 13 (16) | 0.35 |
Former smoker | 42 (39) | 16 (33) | 26 (43) | 0.43 | 8 (29) | 34 (42) | 0.26 |
All | PAP | No-PAP | p-Value | Adherent | Non-Adherent | p-Value | |
---|---|---|---|---|---|---|---|
(N = 109) | (N = 48) | (N = 61) | (N = 28) | (N = 81) | |||
HF diagnosis to inpatient sleep study (years) * | 2.8 ± 4.2 | 2.5 ± 3.9 | 2.9 ± 4.4 | 0.24 | 2.5 ± 4.0 | 2.8 ± 4.2 | 0.86 |
NYHA class | |||||||
Class I | 3 (3) | 1 (2) | 2 (3) | 1.00 | 0 (0) | 3 (4) | 0.57 |
Class II | 58 (53) | 29 (60) | 29 (48) | 0.25 | 18 (64) | 40 (49) | 0.19 |
Class III | 29 (27) | 11 (23) | 18 (30) | 0.52 | 6 (21) | 23 (28) | 0.62 |
Class IV | 19 (17) | 7 (15) | 12 (20) | 0.61 | 4 (14) | 15 (19) | 0.78 |
Ischemic heart disease (%) | 40 (37) | 17 (35) | 23 (38) | 0.84 | 12 (43) | 28 (35) | 0.50 |
Orthotopic heart transplant (%) | 11 (10) | 6 (13) | 5 (8) | 0.53 | 3 (11) | 8 (10) | 1.00 |
LVAD (%) | 10 (9) | 3 (6) | 7 (11) | 0.51 | 2 (7) | 8 (10) | 0.73 |
HF by class † | |||||||
HFrEF ≤ 40 | 47 (43) | 26 (54) | 21 (34) | 0.03 | 15 (54) | 32 (40) | 0.23 |
HFmrEF 41–49 | 2 (2) | 1 (2) | 1 (2) | 1.00 | 0 (0) | 2 (2) | 0.61 |
HFimpEF > 40 | 8 (7) | 2 (4) | 6 (10) | 0.29 | 1 (4) | 7 (9) | 0.45 |
HFpEF ≤ 50 | 31 (28) | 10 (21) | 21 (34) | 0.12 | 7 (25) | 24 (30) | 0.62 |
Cardiac function ‡ | |||||||
LVEF at initial admission (%) | 40.1 ± 19.9 | 38.3 ± 17.7 | 41.4 ± 20.5 | 0.57 | 39.2 ± 18.0 | 40.4 ± 20.6 | 0.96 |
Right ventricular base size (mm) | 42.3 ± 7.3 | 43.2 ± 6.9 | 41.7 ± 7.6 | 0.33 | 41.0 ± 6.9 | 42.8 ± 7.5 | 0.31 |
Tricuspid annular plane systolic excursion (mm) | 17.7 ± 8.1 | 17.7 ± 5.2 | 17.7 ± 9.8 | 0.50 | 17.8 ± 4.8 | 17.6 ± 9.0 | 0.44 |
Right ventricular systolic pressure (mmHg) | 40.3 ± 14.2 | 41.2 ± 14.3 | 39.6 ± 14.4 | 0.54 | 41.7 ± 14.3 | 39.9 ± 14.3 | 0.53 |
Medications | |||||||
Anti-arrhythmic | 29 (27) | 9 (19) | 20 (33) | 0.13 | 5 (18) | 24 (30) | 0.32 |
Loop diuretic | 88 (81) | 41 (85) | 47 (77) | 0.33 | 23 (82) | 65 (80) | 1.00 |
On GDMT § | 56 (98) | 8 (25) | 6 (18) | 0.49 | 6 (35) | 8 (17) | 1.00 |
Number of GDMT medications | 2.6 ± 1.1 | 2.6 ± 1.0 | 2.5 ± 1.3 | 0.82 | 2.6 ± 1.1 | 2.6 ± 1.2 | 0.93 |
All | PAP | No-PAP | p-Value | Adherent | Non-Adherent | p-Value | |
---|---|---|---|---|---|---|---|
(N = 109) | (N = 48) | (N = 61) | (N = 28) | (N = 81) | |||
STOP-BANG | 6.1 ± 1.7 | 6.5 ± 1.1 | 5.9 ± 2.0 | 0.16 | 6.5 ± 1.0 | 6.0 ± 1.8 | 0.76 |
ESS score | 11.9 ± 4.5 | 12.4 ± 3.9 | 11.5 ± 4.9 | 0.73 | 10.9 ± 3.3 | 12.2 ± 4.8 | 0.32 |
Number of ESS score > 10 | 84 (77) | 38 (83) | 45 (73) | 0.32 | 39 (71) | 64 (79) | 0.55 |
Respiratory disturbance index (events/hour) | 40.5 ± 20.7 | 49.9 ± 29.0 | 33.5 ± 24.7 | <0.01 | 47.3 ± 30.3 | 38.4 ± 26.7 | 0.16 |
Apnea–hypopnea index (events/hour) | 39.2 ± 28.9 | 49.4 ± 29.9 | 31.3 ± 25.5 | <0.01 | 47.9 ± 32.3 | 36.3 ± 27.2 | 0.09 |
Central apnea index (events/hour) | 10.2 ± 15.2 | 10.0 ± 14.4 | 10.4 ± 15.8 | 0.44 | 9.4 ± 15.5 | 10.5 ± 15.1 | 0.38 |
Central sleep apnea * | 16 (15) | 5 (10) | 11 (18) | 0.42 | 4 (15) | 12 (15) | 1.00 |
Sleep apnea severity (3: severe to 1: mild) | 2.2 ± 0.9 | 2.5 ± 0.9 | 2.0 ± 0.9 | <0.01 | 2.3 ± 0.9 | 2.2 ± 0.9 | 0.23 |
Severe | 58 (53) | 33 (69) | 25 (41) | <0.01 | 17 (61) | 41 (51) | 0.05 |
Moderate | 18 (17) | 7 (15) | 11 (18) | 0.63 | 5 (18) | 13 (16) | 0.82 |
Mild | 33 (30) | 8 (17) | 25 (41) | <0.01 | 6 (21) | 27 (33) | 0.23 |
Oxygen desaturation index (events/hour) | 34.8 ± 25.3 | 46.7 ± 25.4 | 31.0 ± 24.0 | <0.01 | 47.1 ± 31.7 | 32.2 ± 23.1 | <0.01 |
O2 nadir (% saturation) † | 77.1 ± 9.4 | 75.6 ± 7.9 | 78.1 ± 10.3 | 0.04 | 76.5 ± 7.6 | 77.3 ± 9.9 | 0.37 |
TST Hypoxemic < 88% pO2 ‡ | 2.3 ± 9.3 | 3.2 ± 7.8 | 1.6 ± 10.3 | <0.01 | 4.8 ± 9.6 | 1.5 ± 9.0 | <0.01 |
PAP (N = 48) | Adherent (N = 28) | Did Not Meet Adherence (N = 20) | p-Value | |
---|---|---|---|---|
Nights of PAP use (days) | 123 ± 57 | 165 ± 19 | 65 ± 35 | <0.01 |
Nights with ≥ 4 h of use (days) | 100 ± 64 | 149 ± 26 | 31 ± 23 | <0.01 |
Average use per night (hours/night) | 4.3 ± 2.8 | 6.2 ± 1.7 | 1.4 ± 0.9 | <0.01 |
Post-PAP apnea–hypopnea index | 4.5 ± 5.3 | 3.6 ± 4.4 | 5.9 ± 6.3 | 0.07 |
Post-PAP central apnea index | 0.7 ± 1.2 | 0.6 ± 0.8 | 0.9 ± 1.7 | 0.18 |
PAP setting * | ||||
Continuous PAP | 22 (46) | 12 (43) | 10 (50) | 0.62 |
Bilevel PAP | 9 (19) | 6 (21) | 3 (15) | 0.57 |
Auto-PAP | 17 (35) | 10 (36) | 7 (35) | 0.96 |
Total (N = 109) | PAP (N = 48) | No-PAP (N = 61) | p-Value | Adherent (N = 28) | Non-Adherent (N = 81) | p-Value | |
---|---|---|---|---|---|---|---|
CV death or admission at 6 months | 30 (28) | 11 (23) | 19 (31) | 0.39 | 3 (11) | 27 (33) | 0.03 |
>1 CV readmission at 6 months * | 16 (15) | 5 (10) | 11 (18) | 0.29 | 1 (4) | 15 (19) | 0.07 |
Death at 6 months | 10 (9) | 1 (2) | 9 (15) | 0.04 | 0 (0) | 10 (12) | 0.06 |
Average time to CV admission or death (days) † | 66 ± 50 | 83 ± 56 | 56 ± 44 | 0.16 | 71 ± 52 | 65 ± 50 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durland, J.N.; Hoyland, F.; Epps, J.E.; Gregoski, M.J.; Angles, J.; Jackson, G.R. A Broken Heart and Windy Nights: Single Center Results of Inpatient Sleep Studies and Interventions in Hospitalized Heart Failure Patients. Therapeutics 2025, 2, 1. https://doi.org/10.3390/therapeutics2010001
Durland JN, Hoyland F, Epps JE, Gregoski MJ, Angles J, Jackson GR. A Broken Heart and Windy Nights: Single Center Results of Inpatient Sleep Studies and Interventions in Hospitalized Heart Failure Patients. Therapeutics. 2025; 2(1):1. https://doi.org/10.3390/therapeutics2010001
Chicago/Turabian StyleDurland, Justin N., Frank Hoyland, John Elliott Epps, Mathew J. Gregoski, Jacqueline Angles, and Gregory R. Jackson. 2025. "A Broken Heart and Windy Nights: Single Center Results of Inpatient Sleep Studies and Interventions in Hospitalized Heart Failure Patients" Therapeutics 2, no. 1: 1. https://doi.org/10.3390/therapeutics2010001
APA StyleDurland, J. N., Hoyland, F., Epps, J. E., Gregoski, M. J., Angles, J., & Jackson, G. R. (2025). A Broken Heart and Windy Nights: Single Center Results of Inpatient Sleep Studies and Interventions in Hospitalized Heart Failure Patients. Therapeutics, 2(1), 1. https://doi.org/10.3390/therapeutics2010001