The Bogomolny–Carioli Twisted Transfer Operators and the Bogomolny–Gauss Mapping Class Group
Abstract
:1. Introduction
2. The Desymmetrized PSL (2, ) Group
The Congruence Subgroups
3. The Twisted Reflection Operators
The Bogomolny Transfer Operators
4. Rephrasing in Terms of the Dehn Twists
5. The Bogomolny–Gauss Mapping Class Group of the Desymmetrized PSL (2, ) Domain
6. The Invariant Functions from the Bogomolny Transfer Operator After the Dehn-Twist Representation
7. Discussion
8. Application of Hecke Theory on Dehn Twists for CAT(k) Spaces
9. Prospective Studies
- (a)
- , and
- (b)
- .
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Closed Geodesics of the Bogomolny Map Have Infinite Topological Entropy
Appendix B. The Lifshitz–Khalatnikov–Sinai-Kanin–Shur Map
References
- Hirose, S.; Monden, N. On generating mapping class groups by pseudo-Anosov elements. arXiv 2023, arXiv:2310.13272. [Google Scholar]
- Wajnryb, B. Mapping class group of a surface is generated by two elements. Topology 1996, 35, 377–383. [Google Scholar] [CrossRef]
- Farre, J. Hamiltonian flows for pseudo-Anosov mapping classes. Comment. Math. Helv. 2023, 98, 135–194. [Google Scholar] [CrossRef]
- Bogomolny, E.B.; Georgeot, B.; Giannoni, M.-J.; Schmit, C. Arithmetical chaos. Phys. Rep. 1997, 291, 219–324. [Google Scholar] [CrossRef]
- Bogomolny, E.B. Quantum and Arithmetical Chaos. arXiv 2003, arXiv:nlin/0312061. [Google Scholar]
- Bogomolny, E.; Georgeot, B.; Giannoni, M.J.; Schmit, C. Chaotic Billiards Generated by Arithmetic Groups. Phys. Rev. Lett. 1992, 69, 1477–1480. [Google Scholar] [CrossRef]
- Bogomolny, E.; Carioli, M. Quantum maps for transfer operators. Phys. D Nonlinear Phenom. 1993, 67, 88–112. [Google Scholar] [CrossRef]
- Pollicott, M. Homology and Closed Geodesics in a Compact Negatively Curved Surface. Am. J. Math. 1991, 113, 379–385. [Google Scholar] [CrossRef]
- Parry, W.; Pollicott, M. An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann. Math. 1983, 118, 573–591. [Google Scholar] [CrossRef]
- Phillips, R.; Sarnak, P. Closed geodesics in homology classes. Duke Math. J. 1987, 55, 287–299. [Google Scholar] [CrossRef]
- Liu, W.; Li, B. Chaotic and topological properties of continued fractions. J. Number Theory 2017, 174, 369–383. [Google Scholar] [CrossRef]
- Naito, K. Entropy and recurrent dimensions of discrete dynamical systems given by the Gauss map. Proc. Asian Conf. Nonlinear Anal. Optim. 2009, 1, 227–239. [Google Scholar]
- Lima, Y. Symbolic dynamics for one dimensional maps with nonuniform expansion. Ann. Inst. Henri Poincaré C Anal. Linéaire 2020, 37, 727–755. [Google Scholar] [CrossRef]
- Lecian, O.M. The Action of the Kasner Operators on the Bogomolny–Carioli Quantum Maps: Further Theorems; Researchgate: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- Lecian, O.M. The Classical Limit of the Bogomolny Transfer Operators and the Kasner Transformations on the Hyperbolic Plane; Researchgate: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- Humphries, S. Generators for the Mapping Class Group of a Closed Orientable Surface; SLNM 722; Springer: Berlin, Germany, 1979. [Google Scholar]
- Bogomolny, E.B. Semiclassical quantization of multidimensional systems. Comments At. Mol. Phys. 1990, 25, 67–81. [Google Scholar] [CrossRef]
- Serre, J.-P. Galois Cohomology; Springer: Berlin, Germany, 1997. [Google Scholar]
- Dehn, M. Die Gruppe der Abbildungsklassen. Acta Math. 1938, 69, 135–206. [Google Scholar] [CrossRef]
- Kapovich, Boundaries of Hyperbolic Groups. Available online: https://math.harvard.edu/~ctm/home/text/others/benakli/bdry/bdry.pdf (accessed on 17 November 2024).
- Lecian, O.M. Reduced 2-dimensional Birkhoff surfaces of section of the desymmetrized PSL (2, Z) group: The Anosov characterization. IJMCR 2023, 21, 3261. [Google Scholar] [CrossRef]
- Kim, D.M. Conformal measure rigidity and ergodicity of horospherical foliations. arXiv 2024, arXiv:2404.13727. [Google Scholar]
- Margulis, G. Applications of ergodic theory to the investigation of manifolds of negative curvature. Funct. Anal. Its Appl. 1969, 3, 335–336. [Google Scholar] [CrossRef]
- Besson, G.; Courtois, G.; Gallot, S. Entropies et rigidités des espaces localement symmétriques de courbure strictement négative. Geom. Funct. Anal. 1995, 5, 731–799. [Google Scholar] [CrossRef]
- Dinaburg, E.I. On the relations among various entropy characteristics of dynamical systems. Math. USSR-Izv. 1971, 5, 337–378. [Google Scholar] [CrossRef]
- Venkov, A.B.; Nikitin, A.M. The Selberg trace formula, Ramanujan graphs and some problems in mathematical physics. St. Petersburg Math. J. 1994, 5, 419–484, (Article in Russian without abstract in English). [Google Scholar]
- Lecian, O.M. Some New Theorems Propedeutical to the Sel’berg Trace Formula of the Desymmetrized PSL (2, Z) Domain and of Its Congruence Subgroups; Researchgate: Berlin, Germany, 2024. [Google Scholar]
- Knill, O. On Fredholm determinants in topology. arXiv 2016, arXiv:1612.08229. [Google Scholar]
- Mayer, D.H. On the thermodynamic formalism for the Gauss map. Commun. Math. Phys. 1990, 130, 311–333. [Google Scholar] [CrossRef]
- Baladi, V. Periodic orbits and dynamical spectra. Ergod. Theory Dyn. Syst. 1998, 18, 255–292. [Google Scholar] [CrossRef]
- Cornfeld, I.P.; Fomin, S.V.; Sinai, Y.G. Egodic Theory; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Katsuda, A.; Sunada, T. Homology and closed geodesics in a compact Riemann surface. Am. J. Math. 1988, 110, 145–156. [Google Scholar] [CrossRef]
- Manning, A. Topological entropy for geodesic flows. Ann. Math. 1979, 110, 567–573. [Google Scholar] [CrossRef]
- Brian, W.; Kelly, J.P. Linear operators with infinite entropy. J. Math. Anal. Appl. 2020, 487, 123981. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Khalatnikov, I.M.; Sinai, Y.G.; Khanin, K.M.; Shchur, L.N. On the stochastic properties of relativistic cosmological models near the singularity. JETP Lett. 1983, 38, 91–94. [Google Scholar]
- Khalatnikov, I.M.; Lifshitz, E.M.; Khanin, K.M.; Shchur, L.N.; Sinai, Y.G. On the stochasticity in relativistic cosmology. J. Stat. Phys. 1985, 38, 97–114. [Google Scholar] [CrossRef]
- Damour, T.; Lecian, O.M. Statistical Properties of Cosmological Billiards. Phys. Rev. D 2011, 83, 044038. [Google Scholar] [CrossRef]
- Khalatnikov, I.M.; Belinskii, V.A. On the nature of the singularities in the general solution of the gravitational equations. Sov. Phys. JETP 1969, 29, 911–917. [Google Scholar]
- Khalatnikov, I.M.; Lifshitz, E.M. General cosmological solution of the gravitational equations with a singularity in time. Phys. Rev. Lett. 1970, 24, 76–79. [Google Scholar] [CrossRef]
- Belinskii, V.A.; Khalatnikov, I.M. General solution of the gravitational equations with a physical singularity. Sov. Phys. JETP 1970, 30, 1174–1180. [Google Scholar]
- Belinskii, V.A.; Lifshitz, E.M.; Khalatnikov, I.M. Oscillatory approach to the singular point in relativistic cosmology. Sov. Phys. Uspekhi 1971, 13, 745. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Khalatnikov, I.M. Investigations in relativistic cosmology. Adv. Phys. 1963, 12, 185–249. [Google Scholar] [CrossRef]
- Lecian, O.M. Reflections on the Hyperbolic Plane. Int. J. Mod. Phys. D 2013, 22, 1350085. [Google Scholar] [CrossRef]
- Lecian, O.M. BKL maps, Poincaré sections, and quantum scars. Phys. Rev. D 2013, 88, 104014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecian, O.M. The Bogomolny–Carioli Twisted Transfer Operators and the Bogomolny–Gauss Mapping Class Group. Int. J. Topol. 2025, 2, 1. https://doi.org/10.3390/ijt2010001
Lecian OM. The Bogomolny–Carioli Twisted Transfer Operators and the Bogomolny–Gauss Mapping Class Group. International Journal of Topology. 2025; 2(1):1. https://doi.org/10.3390/ijt2010001
Chicago/Turabian StyleLecian, Orchidea Maria. 2025. "The Bogomolny–Carioli Twisted Transfer Operators and the Bogomolny–Gauss Mapping Class Group" International Journal of Topology 2, no. 1: 1. https://doi.org/10.3390/ijt2010001
APA StyleLecian, O. M. (2025). The Bogomolny–Carioli Twisted Transfer Operators and the Bogomolny–Gauss Mapping Class Group. International Journal of Topology, 2(1), 1. https://doi.org/10.3390/ijt2010001