Balancing Public and Private Interests in Urban Transformations: Handling Uncertainty with the Monte Carlo Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Model and Approach
- the urban planning parameters applicable to private areas;
- the land surfaces to be transferred to public use, in accordance with specified urban planning standards and indices;
- the financial private contributions required for primary and secondary urbanization of the areas.
2.2. Model Implementation and Calculation Process
- represents the technical transformation cost, which includes the cost of constructing covered areas, private green spaces, and private parking;
- and refer to the urbanization charges and construction cost contributions, both defined by the Municipality of Lucca based on the area and type of intervention;
- represents professional fees, which are the costs of professional services, expressed as a percentage of the technical transformation cost;
- represents general expenses, calculated as a percentage of the sum of the technical transformation cost and urbanization charges;
- represents marketing and sales expenses, calculated as a percentage of the ;
- represents financial charges, a variable that fluctuates over time and is calculated based on the average annual interest rate and the duration of the transformation;
- is the profit of the promoter, which is the return derived from investing capital in the real estate project. It depends on the average annual interest rate and the duration of the operation.
2.3. Data Selection and Case Study Parameters
2.4. Selection of Variables and Constraints
3. Results
3.1. Transformation Value Computation, Distributions, and Descriptive Statistics
3.2. Comparison of the Uniform and Normal Models
- Mean and standard deviation, indicating central tendency and variability, respectively. Standard deviation is particularly relevant for assessing the degree of uncertainty associated with the input parameters; a higher standard deviation suggests greater potential risk or variability in project outcomes;
- Minimum and maximum values, which define the range of possible outcomes. These values allow for a preliminary assessment of best- and worst-case scenarios, offering valuable input for risk analysis and decision-making;
- Skewness and kurtosis, which describe the shape of the distribution. Skewness measures asymmetry: positive values indicate a right-skewed distribution, while negative values indicate left-skewness. Kurtosis evaluates the “peakedness” of the distribution: higher values imply a sharper peak, while negative values indicate a flatter distribution.
Case 1 Uniform | Case 1 Normal | Case 2 Uniform | Case 2 Normal | Case 3 Uniform | Case 3 Normal | |
---|---|---|---|---|---|---|
Mean (€/m2) | 111.81 | 113.96 | 158.75 | 159.46 | 153.05 | 153.97 |
St. Dev. (€/m2) | 29.74 | 20.14 | 40.72 | 27.84 | 39.27 | 26.6 |
Kurtosis | −0.51 | 0.12 | −0.47 | 0.059 | −0.58 | −0.071 |
Skewness | 0.051 | 0.047 | −0.038 | 0.043 | 0.038 | 0.11 |
Minimum (€/m2) | 38.39 | 40.39 | 48.38 | 69.76 | 54.92 | 72.03 |
Maximum (€/m2) | 193.84 | 185.48 | 274.53 | 258.87 | 270.43 | 238.11 |
- Case 1—Uniform: The mean value is 111.81 €/m2, with a standard deviation of 29.75 €/m2. The minimum value is 38.39 €/m2, and the maximum value is 193.84 €/m2, denoting a favorable urban transformation. However, the data exhibit a slight positive skewness (skewness = 0.051) and a relatively flat distribution (kurtosis = −0.51). The positive skewness is not ideal, as it suggests that the number of iterations with values greater than the mean unit TV is smaller compared to those with results lower than the mean value per square meter. Negative kurtosis values are also not optimal because they indicate a flatness in the distribution;
- Case 1—Normal: The mean value is 113.96 €/m2, with a standard deviation of 20.14 €/m2. The minimum value is 40.39 €/m2, and the maximum value is 185.47 €/m2, which is still favorable. In this case, there is again a slight positive skewness (skewness = 0.047) and a relatively elongated distribution (kurtosis = 0.12). While the positive skewness is still suboptimal, the positive kurtosis is better since it reduces dispersion of values around the mean value;
- Case 2—Uniform: The mean value is 158.75 €/m2, with a standard deviation of 40.72 €/m2. The minimum value is 48.38 €/m2, and the maximum value is 274.53 €/m2. The data show a slight negative skewness (skewness = −0.04) and a relatively flat distribution (kurtosis = −0.467). The negative skewness is favorable as it indicates that the number of iterations with values greater than the mean unit TV is greater than those with values less than the mean. However, the negative kurtosis is suboptimal;
- Case 2—Normal: The mean value is 159.46 €/m2, with a standard deviation of 27.84 €/m2. The minimum value is 69.76 €/m2, and the maximum value is 258.87 €/m2. The data exhibit a slight positive skewness (skewness = 0.043) and a relatively elongated distribution (kurtosis = 0.06). As in the previous cases, the positive skewness is not ideal, while the positive kurtosis is favorable;
- Case 3—Uniform: The mean value is 153.05 €/m2, with a standard deviation of 39.27 €/m2. The minimum value is 54.92 €/m2, and the maximum value is 270.43 €/m2. The data show slight positive skewness (skewness = 0.04) and a relatively flat distribution (kurtosis = −0.58). Both positive skewness and negative kurtosis are suboptimal;
- Case 3—Normal: The mean value is 153.97 €/m2, with a standard deviation of 26.60 €/m2. The minimum value is 72.03 €/m2, and the maximum value is 238.11 €/m2. The data again exhibit slight positive skewness (skewness = 0.11) and a relatively flat distribution (kurtosis = −0.071). Both positive skewness and negative kurtosis are suboptimal.
3.3. Stability Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manganelli, B.; Murgante, B. The Dynamics of Urban Land Rent in Italian Regional Capital Cities. Land 2017, 6, 54. [Google Scholar] [CrossRef]
- Berto, R.; Cechet, G.; Stival, C.A.; Rosato, P. Affordable Housing vs. Urban Land Rent in Widespread Settlement Areas. Sustainability 2020, 12, 3129. [Google Scholar] [CrossRef]
- Zhou, M. An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use policy analysis. Land Use Policy 2015, 42, 479–491. [Google Scholar] [CrossRef]
- Lu, X.-H.; Ke, S.-G. Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int. 2018, 77, 90–98. [Google Scholar] [CrossRef]
- Deng, S. Exploring the relationship between new-type urbanization and sustainable urban land use: Evidence from prefecture-level cities in China. Sustain. Comput. Inform. Syst. 2021, 30, 100446. [Google Scholar] [CrossRef]
- Tan, R.; Zhang, T.; Liu, D.; Xu, H. How will innovation-driven development policy affect sustainable urban land use: Evidence from 230 Chinese cities. Sustain. Cities Soc. 2021, 72, 103021. [Google Scholar] [CrossRef]
- Beretić, N.; Talu, V. Social Housing as an Experimental Approach to the Sustainable Regeneration of Historic City Centers: An Ongoing Study of Sassari City, Italy. Sustainability 2020, 12, 4579. [Google Scholar] [CrossRef]
- La Rosa, D.; Privitera, R.; Barbarossa, L.; La Greca, P. Assessing spatial benefits of urban regeneration programs in a highly vulnerable urban context: A case study in Catania, Italy. Landsc. Urban Plan. 2017, 157, 180–192. [Google Scholar] [CrossRef]
- Pantaloni, M.; Marinelli, G.; Santilocchi, R.; Minelli, A.; Neri, D. Sustainable Management Practices for Urban Green Spaces to Support Green Infrastructure: An Italian Case Study. Sustainability 2022, 14, 4243. [Google Scholar] [CrossRef]
- Antoniol, M. Gli Indici Di Edificabilità—Superfici, Volumi e Densità Edilizia; Exeo Edizioni: Padova, Italy, 2011. [Google Scholar]
- Sun, G.; Chen, X.; Jia, X.; Yao, Y.; Wang, Z. Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 2081–2092. [Google Scholar] [CrossRef]
- Da Silva, F.T.; Reis, N.C.; Santos, J.M.; Goulart, E.V.; de Alvarez, C.E. Influence of urban form on air quality: The combined effect of block typology and urban planning indices on city breathability. Sci. Total. Environ. 2022, 814, 152670. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Santos, R.; Lopes, A.; Araújo, V. Morphological Indices as Urban Planning Tools in Northeastern Brazil. Sustainability 2018, 10, 4358. [Google Scholar] [CrossRef]
- Candian, A. Il Contratto Di Trasferimento Di Volumetria; Giuffrè: Rome, Italy, 1990; Volume 62. [Google Scholar]
- Fiorentini, N.; Mariotti, D.; Rovai, M. Defining Risk Curves in feasibility analyses of urban regeneration projects with Monte Carlo method. Valori Valutazioni 2024, 36, 149–170. [Google Scholar] [CrossRef]
- Losasso, M. Urban Regeneration: Innovative Perspectives. Techne J. Technol. Archit. Environ. 2015, 10, 4–5. [Google Scholar]
- Yu, J.-H.; Kwon, H.-R. Critical success factors for urban regeneration projects in Korea. Int. J. Proj. Manag. 2011, 29, 889–899. [Google Scholar] [CrossRef]
- Romanelli, M.; Ferrara, M.; Metallo, C.; Reina, R.; Varriale, L.; Ventura, M.; Vesperi, W.; Buonocore, F. Advancing Urban Regeneration Projects for Sustainable Development and Intellectual Capital. In Proceedings of the European Conference on Knowledge Management, ECKM, Naples, Italy, 1–2 September 2022; Volume 23. [Google Scholar]
- Dell’ovo, M.; Bassani, S.; Stefanina, G.; Oppio, A. Memories at Risk. How to Support Decisions about Abandoned Industrial Heritage Regeneration. Valori Valutazioni 2020, 2020, 107–115. [Google Scholar]
- Abatecola, G.; Mari, M.; Poggesi, S. How Can Virtuous Real Estate Public-Private Partnerships Be Developed? Towards a Co-Evolutionary Perspective. Cities 2020, 107, 102896. [Google Scholar] [CrossRef]
- Guarini, M.R.; Morano, P.; Micheli, A.; Sica, F. Public-Private Negotiation of the Increase in Land or Property Value by Urban Variant: An Analytical Approach Tested on a Case of Real Estate Development. Sustainability 2021, 13, 10958. [Google Scholar] [CrossRef]
- Guarini, M.R.; Morano, P.; Micheli, A. A Procedure to Evaluate the Extra-Charge of Urbanization. In Computational Science and Its Applications—ICCSA 2020, Proceedings of the 20th International Conference, Cagliari, Italy, 1–4 July 2020; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 12251 LNCS. [Google Scholar]
- Oppio, A.; Torrieri, F.; Dell’Oca, E. Land Value in Urban Development Agreements: Methodological Perspectives and Opera-tional Recommendations. Valori Valutazioni 2018, 2018, 87–96. [Google Scholar]
- Read, D.C.; Leland, S.; Pope, J. Views from the Field: Economic Development Practitioners’ Perceptions About Public-Private Real Estate Partnerships. Urban Aff. Rev. 2020, 56, 1876–1900. [Google Scholar] [CrossRef]
- Soriano Llobera, J.M.; Roig Hernando, J. Public-Private Partnerships for Real Estate Projects: Current Framework and New Trends. Reg. Sect. Econ. Stud. 2015, 15, 35–44. [Google Scholar]
- Morano, P.; Tajani, F.; Anelli, D. Urban Planning Variants: A Model for the Division of the Activated “Plusvalue” between Public and Private Subjects. Valori Valutazioni 2021, 28, 31–47. [Google Scholar] [CrossRef]
- Ragazzo, M. Il Cambio Di Destinazione d’uso e Il Pagamento Del Contributo per Oneri Di Urbanizzazione. Urban. Appalti 2005, 10, 1201–1210. [Google Scholar]
- D’Amato, M.; Cvorovich, V.; Amoruso, P. Short Tab Market Comparison Approach. An Application to the Residential Real Estate Market in Bari. In Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2017; Volume 86. [Google Scholar]
- Del Territorio, A. Manuale Operativo Delle Stime Immobiliari; FrancoAngeli: Milan, Italy, 2011; Volume 17. [Google Scholar]
- Zhai, B.; Chen, H.; Chen, A. Study on Investment Risk Assessment Model of Real Estate Project Based on Monte Carlo Method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, England, 2018; Volume 189. [Google Scholar]
- Mangialardo, A.; Micelli, E. Simulation Models to Evaluate the Value Creation of the Grass-Roots Participation in the Enhancement of Public Real-Estate Assets with Evidence from Italy. Buildings 2017, 7, 100. [Google Scholar] [CrossRef]
- Bao, H.; Chong, A.Y.-L.; Wang, H.; Wang, L.; Huang, Y. Quantitative decision making in land banking: A Monte Carlo simulation for China’s real estate developers. Int. J. Strat. Prop. Manag. 2012, 16, 355–369. [Google Scholar] [CrossRef]
- Barañano, A.; De La Peña, J.I.; Moreno, R. Valuation of real-estate losses via Monte Carlo simulation. Econ. Res. Ekon. Istraz. 2020, 33, 1867–1888. [Google Scholar] [CrossRef]
- Del Giudice, V.; De Paola, P.; Forte, F.; Manganelli, B. Real Estate Appraisals with Bayesian Approach and Markov Chain Hybrid Monte Carlo Method: An Application to a Central Urban Area of Naples. Sustainability 2017, 9, 2138. [Google Scholar] [CrossRef]
- Hoesli, M.; Jani, E.; Bender, A. Monte Carlo simulations for real estate valuation. J. Prop. Invest. Finance 2006, 24, 102–122. [Google Scholar] [CrossRef]
- Loizou, P.; French, N. Risk and Uncertainty in Development: A Critical Evaluation of Using the Monte Carlo Simulation Method as a Decision Tool in Real Estate Development Projects. J. Prop. Invest. Financ. 2012, 30, 198–210. [Google Scholar] [CrossRef]
- Amar, J. The Monte Carlo method in science and engineering. Comput. Sci. Eng. 2006, 8, 9–19. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Regulation (EU) No 575/2013 of 26 June 2013 on Prudential Requirements for Credit Institutions and Investment Firms and Amending Regulation (EU) No 648/2012; EUR-lex: Brussels, Belgium, 2013. [Google Scholar]
- Collegio degli Ingegneri e Architetti di Milano Prezzi Tipologie Edilizie. DEI S.R.L. Tipografia del Genio Civile, Roma; Gruppo LSWR: Milan, Italy, 2024. [Google Scholar]
- Ministero per i Lavori Pubblici. Decreto Ministeriale 2 Aprile 1968: Limiti Inderogabili Di Densità Edilizia, Di Altezza, Di Distanza Fra i Fabbricanti e Rapporti Massimi Tra Spazi Destinati Agli Insediamenti Residenziali e Produttivi e Spazi Pubblici o Riservati Alle Attività Collettive, al Verde Pubblico o a Parcheggi Da Osservare Ai Fini Della Formazione Dei Nuovi Strumenti Urbanistici o Della Revisione Di Quelli Esistenti, Ai Sensi Dell’art. 17 Della Legge 6 Agosto 1967, n.765; 1968. Available online: https://www.gazzettaufficiale.it/eli/id/1968/04/16/1288Q004/sg (accessed on 24 April 2025).
- Comitato di Basilea per la Vigilanza Bancaria. Convergenza Internazionale Della Misurazione Del Capitale e Dei Coefficienti Patrimoniali; Nuovi Schemi Di Regolamentazione; Bank for International Settlements: Basel, Switzerland, 2004. [Google Scholar]
- Ministero per i Lavori Pubblici. Legge 24 Marzo 1989, n. 122: Disposizioni in Materia Di Parcheggi, Programma Triennale per Le Aree Urbane Maggiormente Popolate, Nonché Modificazioni Di Alcune Norme Del Testo Unico Sulla Disciplina Della Circolazione Stradale, Approvato Con Decreto Del Presidente Della Repubblica 15 Giugno 1959, n. 393.; 1989. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:legge:1989-03-24;122 (accessed on 24 April 2025).
Case Study 1 | Case Study 2 | Case Study 3 | |
---|---|---|---|
Size of the area | 6500 m2 | 3200 m2 | 5900 m2 |
Buildable area to be realized | 3200 m2 | 1600 m2 | 2400 m2 |
Public area to be allocated | 3300 m2 | 1600 m2 | 3500 m2 |
Primary urbanization costs | EUR 17.916/m3 | EUR 17.916/m3 | EUR 17.916/m3 |
Secondary urbanization costs | EUR 51.888/m3 | EUR 51.888/m3 | EUR 51.888/m3 |
Contribution to the construction costs | 8% | 8% | 8% |
Indirect costs related to land capital | 15% TV | 15% TV | 15% TV |
Min | Max | Mean | St. Dev. Normal Model | |
---|---|---|---|---|
Residential construction costs (€/m2) | 800 | 1200 | 1000 | 50 (5%) |
OMI value (€/m2) | 2340 | 2860 | 2600 | 130 (5%) |
Construction cost of private green areas (€/m2) | 40.50 | 49.50 | 45.00 | 2.25 (5%) |
Professional fees (% of TC) | 5% | 7% | 5% | 1% |
Cost of parking lots (€/m2) | 45 | 55 | 50 | 2.5 (5%) |
General expenses (% of TC + CURB) | 1% | 3% | 2% | 0.4 |
Marketing and sales expenses (% of MV) | 1% | 3% | 2% | 0.4 |
Total duration of the operation (months) | 24 | 36 | 30 | 1.5 (5%) |
Minimum Public Area | Debt Ratio | Private Parking Area |
---|---|---|
Number of inhabitants × 18 m2 | 20% < d < 60% | 1 m2/10 m3 |
Uniform Model | Normal Model | Differences | |
---|---|---|---|
Case Study 1 | |||
Average | EUR 726,783.88 | EUR 740,733.53 | EUR −13,949.65 (−1.91%) |
Average per m2 | 111.8 €/m2 | 114 €/m2 | −2.2 €/m2 (−1.97%) |
Percentage within 10% of the average | 29.3% | 42.8% | −12.1% |
Case Study 2 | |||
Average | EUR 508,004.13 | EUR 510,255.2 | EUR −2251.07 (−0.44%) |
Average per m2 | 158.8 €/m2 | 159.5 €/m2 | −0.7 €/m2 (−0.44%) |
Percentage within 10% of the average | 30.3% | 43.3% | −13% |
Case Study 3 | |||
Average | EUR 903,024.16 | EUR 908,405.75 | EUR −5381.59 (−0.60%) |
Average per m2 | 153.1 €/m2 | 154 €/m2 | −0.9 €/m2 (−0.59%) |
Percentage within 10% of the average | 30.3% | 43.7% | −13.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorentini, N.; Moriani, M.; Rovai, M. Balancing Public and Private Interests in Urban Transformations: Handling Uncertainty with the Monte Carlo Method. Real Estate 2025, 2, 3. https://doi.org/10.3390/realestate2020003
Fiorentini N, Moriani M, Rovai M. Balancing Public and Private Interests in Urban Transformations: Handling Uncertainty with the Monte Carlo Method. Real Estate. 2025; 2(2):3. https://doi.org/10.3390/realestate2020003
Chicago/Turabian StyleFiorentini, Nicholas, Matteo Moriani, and Massimo Rovai. 2025. "Balancing Public and Private Interests in Urban Transformations: Handling Uncertainty with the Monte Carlo Method" Real Estate 2, no. 2: 3. https://doi.org/10.3390/realestate2020003
APA StyleFiorentini, N., Moriani, M., & Rovai, M. (2025). Balancing Public and Private Interests in Urban Transformations: Handling Uncertainty with the Monte Carlo Method. Real Estate, 2(2), 3. https://doi.org/10.3390/realestate2020003