The Role of the SR Protein 9G8 in the Drosophila Intestine to Regulate Lipid Metabolism
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. SR Proteins Affect Lipid Levels in Whole Flies
3.2. 9G8 Regulates Metabolic Gene Expression in the Drosophila Intestine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief 2020, 360, 1–8. [Google Scholar]
- Staats, S.; Luersen, K.; Wagner, A.E.; Rimbach, G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. J. Agric. Food Chem. 2018, 66, 3737–3753. [Google Scholar] [CrossRef] [PubMed]
- Musselman, L.P.; Kuhnlein, R.P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 2018, 221, jeb163881. [Google Scholar] [CrossRef]
- Beller, M.; Sztalryd, C.; Southall, N.; Bell, M.; Jackle, H.; Auld, D.S.; Oliver, B. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 2008, 6, e292. [Google Scholar] [CrossRef]
- Guo, Y.; Walther, T.C.; Rao, M.; Stuurman, N.; Goshima, G.; Terayama, K.; Wong, J.S.; Vale, R.D.; Walter, P.; Farese, R.V. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453, 657–661. [Google Scholar] [CrossRef]
- Pospisilik, J.A.; Schramek, D.; Schnidar, H.; Cronin, S.J.; Nehme, N.T.; Zhang, X.; Knauf, C.; Cani, P.D.; Aumayr, K.; Todoric, J.; et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140, 148–160. [Google Scholar] [CrossRef]
- Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef]
- Shepard, P.J.; Hertel, K.J. The SR protein family. Genome Biol. 2009, 10, 242. [Google Scholar] [CrossRef]
- Bradley, T.; Cook, M.E.; Blanchette, M. SR proteins control a complex network of RNA-processing events. RNA 2015, 21, 75–92. [Google Scholar] [CrossRef]
- Bennick, R.A.; Nagengast, A.A.; DiAngelo, J.R. The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. Biochem. Biophys. Res. Commun. 2019, 516, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Gingras, R.M.; Warren, M.E.; Nagengast, A.A.; Diangelo, J.R. The control of lipid metabolism by mRNA splicing in Drosophila. Biochem. Biophys. Res. Commun. 2014, 443, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Weidman, T.; Nagengast, A.A.; DiAngelo, J.R. The splicing factor 9G8 regulates the expression of NADPH-producing enzyme genes in Drosophila. Biochem. Biophys. Res. Commun. 2022, 620, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Palm, W.; Sampaio, J.L.; Brankatschk, M.; Carvalho, M.; Mahmoud, A.; Shevchenko, A.; Eaton, S. Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue lipid composition. PLoS Genet. 2012, 8, e1002828. [Google Scholar] [CrossRef] [PubMed]
- Parvy, J.P.; Napal, L.; Rubin, T.; Poidevin, M.; Perrin, L.; Wicker-Thomas, C.; Montagne, J. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 2012, 8, e1002925. [Google Scholar] [CrossRef]
- Ja, W.W.; Carvalho, G.B.; Mak, E.M.; de la Rosa, N.N.; Fang, A.Y.; Liong, J.C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 2007, 104, 8253–8256. [Google Scholar] [CrossRef]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef]
- Phillips, M.D.; Thomas, C.M. Brush border spectrin is required for early endosome recycling in Drosophila. J. Cell Sci. 2006, 119, 1361–1370. [Google Scholar] [CrossRef]
- Sanford, J.R.; Ellis, J.; Caceres, J.F. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem. Soc. Trans. 2005, 33, 443–446. [Google Scholar] [CrossRef]
- de Renobales, M.; Blomquist, G.J. Biosynthesis of medium chain fatty acids in Drosophila melanogaster. Arch. Biochem. Biophys. 1984, 228, 407–414. [Google Scholar] [CrossRef]
- Chertemps, T.; Duportets, L.; Labeur, C.; Ueda, R.; Takahashi, K.; Saigo, K.; Wicker-Thomas, C. A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2007, 104, 4273–4278. [Google Scholar] [CrossRef] [PubMed]
- Chertemps, T.; Duportets, L.; Labeur, C.; Ueyama, M.; Wicker-Thomas, C. A female-specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Mol. Biol. 2006, 15, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006, 45, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.E.; Pereira, S.L.; Sprecher, H.; Huang, Y.S. Elongation of long-chain fatty acids. Prog. Lipid Res. 2004, 43, 36–54. [Google Scholar] [CrossRef]
- Pihlajamaki, J.; Lerin, C.; Itkonen, P.; Boes, T.; Floss, T.; Schroeder, J.; Dearie, F.; Crunkhorn, S.; Burak, F.; Jimenez-Chillaron, J.C.; et al. Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab. 2011, 14, 208–218. [Google Scholar] [CrossRef]
Fly Line | Genotype | Source |
---|---|---|
UAS-EGFP-RNAi-1 | y [1] sc [*] v [1]; P{y [+t7.7] v [+t1.8] = VALIUM20-EGFP.shRNA.1}attP40 | BL#41555 |
UAS-EGFP-RNAi-2 | y [1] sc [*] v [1]; P{y [+t7.7] v [+t1.8] = TRiP.GLV21067}attP2 | BL#35702 |
UAS-GFP-RNAi | w [1118]; P{w [+mC] = UAS-GFP.dsRNA.R}142 | BL#9330 |
UAS-SF2-RNAi | y [1] v [1]; P{y [+t7.7] v [+t1.8] = TRiP.HM05199}attP2 | BL#29522 |
UAS-RBP1-RNAi | y [1] sc [*] v [1]; P{y [+t7.7] v [+t1.8] = TRiP.HMC03902}attP40 | BL#55688 |
UAS-RBP1 like-RNAi | y [1] sc [*] v [1]; P{y [+t7.7] v [+t1.8] = TRiP.HMS02820}attP40 | BL#44100 |
UAS-SRP54-RNAi | y [1] sc [*] v [1]; P{y [+t7.7] v [+t1.8] = TRiP.HM05224}attP2 | BL#30533 |
UAS-RSF1-RNAi | w [1118]; UAS-IR:Rsf1/TM3 | VDRC#22186 |
UAS-9G8-RNAi | w [1118]; attB:UAS-IR:9G8 | VDRC#100226 |
UAS-B52-RNAi | w [1118]; attB:UAS-IR:B52 | VDRC#101740 |
UAS-SC35-RNAi | w [1118]; attB:UAS-IR:SC35 | VDRC#104978 |
Mex-Gal4 | w [1118]; P{w[+mC] = mex1-GAL4.2.1}10-8 | BL#91368 |
Primer | Forward Sequence (5′ → 3′) | Reverse Sequence (5′ → 3′) |
---|---|---|
Rp49 | GACGCTTCAAGGGACAGTATCTG | AAACGCGGTTCTGCATGAG |
FASN3 (cg17374) | TGCTGGTACTGGAGGCATTG | CCCCTTTTCCGTTCGTCTCA |
eloF (cg16905) | CACCGAAAGCCCTTCCATTTG | GATCCATCGGCAGGCTAACA |
FAD2 (cg7923) | CAACGGTCGTGCTCTTTTGG | TTGCCCTTCTCCACAACCTC |
cg16904 | GAAGCCGTACAACCTGAGCT | ATGGAGGAACGTGATCTGGC |
cg30008 | GTAACGCTGGTCTACGCACT | CACCAAGGTCTTATCCGCCA |
cg31089 | TTCCTTGGTGCACATGTGGT | TCCATTCCGTATCCGCCATG |
cg10163 | GATGCCCGACTCCATGTGAT | ACGGAGAGATGATGACGCAC |
cg31091 | ATACGATGTTTGGCTGGGCA | CTGATCCTGTCCGTTCTCCG |
cg13562 | CTTCGTCTACTCCTGCCACC | CGAAGTTCTCCTCGTAGCCC |
Upregulated | ||
---|---|---|
Term | # of Genes | p Value |
fatty acid elongation, saturated fatty acid | 3 | 2.60 × 10−3 |
fatty acid elongation, monounsaturated fatty acid | 3 | 2.60 × 10−3 |
fatty acid elongation, polyunsaturated fatty acid | 3 | 2.60 × 10−3 |
lipid catabolic process | 4 | 3.02 × 10−3 |
transmembrane transport | 6 | 3.04 × 10−3 |
fatty acid elongation | 3 | 3.15 × 10−3 |
very long-chain fatty acid biosynthetic process | 3 | 3.44 × 10−3 |
sphingolipid biosynthetic process | 3 | 4.39 × 10−3 |
pheromone metabolic process | 2 | 1.14 × 10−2 |
intracellular cholesterol transport | 2 | 2.65 × 10−2 |
lipid metabolic process | 3 | 3.33 × 10−2 |
sterol transport | 2 | 4.13 × 10−2 |
O-glycan processing, core 1 | 2 | 4.13 × 10−2 |
response to DDT | 2 | 4.13 × 10−2 |
Downregulated | ||
Term | # of Genes | p value |
carbohydrate metabolic process | 3 | 1.67 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voskoboynikov, R.; DiAngelo, J.R. The Role of the SR Protein 9G8 in the Drosophila Intestine to Regulate Lipid Metabolism. Lipidology 2025, 2, 1. https://doi.org/10.3390/lipidology2010001
Voskoboynikov R, DiAngelo JR. The Role of the SR Protein 9G8 in the Drosophila Intestine to Regulate Lipid Metabolism. Lipidology. 2025; 2(1):1. https://doi.org/10.3390/lipidology2010001
Chicago/Turabian StyleVoskoboynikov, Roman, and Justin R. DiAngelo. 2025. "The Role of the SR Protein 9G8 in the Drosophila Intestine to Regulate Lipid Metabolism" Lipidology 2, no. 1: 1. https://doi.org/10.3390/lipidology2010001
APA StyleVoskoboynikov, R., & DiAngelo, J. R. (2025). The Role of the SR Protein 9G8 in the Drosophila Intestine to Regulate Lipid Metabolism. Lipidology, 2(1), 1. https://doi.org/10.3390/lipidology2010001